1 An X-ray fluorescence spectrometer using CMOS-sensors AD AD vanced MO MO nolithic S S ensors for Supported by BMBF (06FY9099I and 06FY7113I), HIC for.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
CLIC Collaboration Working Meeting: Work packages November 3, 2011 R&D on Detectors for CLIC Beam Monitoring at LBNL and UCSC/SCIPP Marco Battaglia.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
STAR Microvertex Upgrade Meeting, Strasbourg, April Status of sensors from the engineering run AMS-035 OPTO Wojciech.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Device simulation of CMOS Pixel Sensors with synopsys
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) Outline: Operation principle of MAPS Radiation tolerance against ionising doses (update)
Introduction Trapped Plasma Avalanche Triggered Transit mode Prager
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
I n s t i t u t e of H i g h E n e r g y P h y s i c s И н с т и т у т Ф и з и к и В ы с о к и х Э н е р г и й Influence of cooling on the working parameters.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
Performances of epitaxial GaAs detectors E. Bréelle, H. Samic, G. C. Sun, J. C. Bourgoin Laboratoire des Milieux Désordonnés et Hétérogènes Université.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
1 A Digitizer for Monolithic Active Pixel Sensors Christina Dritsa 1,2,3, Michael Deveaux 3 1 IPHC, Strasbourg, France 2 GSI, Darmstadt, Germany 2 GSI,
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Test of the MAPS add-on board S. Amar-Youcef, M. Deveaux, D. Doering, C. Müntz, S. Seddiki, P. Scharrer, Ch. Schrader, J. Stroth, T. Tischler.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 3 Paul Dauncey, Imperial College London.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
ICT 1 SINTEF Edge-On Sensor with Active Edge Fabricated by 3D-Technology T. E. Hansen 1), N. Ahmed 1), A. Ferber 2) 1) SINTEF MiNaLab 2) SINTEF Optical.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
1 Summary of the radiation hardness studies of Frankfurt AD AD vanced MO MO nolithic S S ensors for IKF Frankfurt: Dennis Doering*, Samir Amar-Youcef,
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
Comparison of a CCD and the Vanilla CMOS APS for Soft X-ray Diffraction Graeme Stewart a, R. Bates a, A. Blue a, A. Clark c, S. Dhesi b, D. Maneuski a,
Charge transport model for Swept Charge Devices (SCD) P. S. Athiray Post Doctoral Research Fellow, Manipal Centre for Natural Sciences, Manipal University,
IPHC, Strasbourg / GSI, Darmstadt
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Fully depleted CMOS sensor using reverse substrate bias
CMOS pixel sensors & PLUME operation principles
ADvanced MOnolithic Sensors for
Radiation tolerance of MAPS
HVCMOS Detectors – Overview
Radiation hardness of fully depleted
Mimosa18 on PCB (from the chip side)
Enhanced Lateral Drift (ELAD) sensors
R&D of CMOS pixel Shandong University
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

1 An X-ray fluorescence spectrometer using CMOS-sensors AD AD vanced MO MO nolithic S S ensors for Supported by BMBF (06FY9099I and 06FY7113I), HIC for FAIR, GSI and EU-FP7 1)Real-time water analysis using XRF 2)CMOS-Sensors 3)Reconstruction of the energy information 4)Improving the quantum efficiency Dennis Doering, Michael Deveaux Institut für Kernphysik Frankfurt for the CBM-MVD-collaboration Sensor development: IPHC Strasbourg

/17/25 Application: X-ray spectrometer M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March Monitoring water quality and trigger on traces of pollution Identifing elements via their characteristic X-ray-fluorescence lines (XRF) Required sensor features: - Good energy resolution - High-rate capability  Adapted CMOS-sensors - Low noise - Low production costs Sample

/17/25 Operation principle of CMOS-sensors M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March SiO 2 N+P+ P- P+ Diode Epitaxial Layer P-Well Substrate N+ Particle Depleted zone e-

/17/25 Charge smearing between pixels M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March P- P+ Diode Epitaxial Layer P-Well Photon Depleted zone One pixel: e- Cd-109-source (support is built up of brass) Ag K α,K β Chip (PCB contains Ba) Drawback: Charge smearing +20°C

/17/25 Cluster of 25 pixels M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March P- P+ Diode Epitaxial Layer P-Well Photon Depleted zone Cluster of 25 pixels e- Disadvantage: Noise contribution of 25 pixels Cd-109-source (support is built up of brass) Ag K α,K β Chip (PCB contains Ba) +20°C

/17/25 Trigger on conversions in the depleted zone M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March P- P+ Diode Epitaxial Layer P-Well Photon Depleted zone e- Cd-109-source (support is built up of brass) Ag K α,K β Chip (PCB contains Ba) Triggercondition: Neighboring pixel carry no charge +20°C

/17/25 Trigger on conversions in the depleted zone M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March P- P+ Diode Epitaxial Layer P-Well Photon Depleted zone e- Cd-109-source (support is built up of brass) Ag K α,K β Chip (PCB contains Ba) Drawback: Reduced quantum efficiency +20°C

/17/25 Linearity of amplification chain M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March Energy[keV]=(0.0364±0.0004) · Q coll [ADC]+(-0.004±0.05) Linear energy scale at least between a few keV up to 25keV +20°C

/17/25 Strategies to increase the quantum efficiency M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March Larger depleted volumes: ⇒ Accelerated charge collection, less diffusion ⇒ Less charge smearing between pixels Aim: Full depletion of the epitaxial layer SiO 2 N+P+ P- P+ Epitaxial Layer P-Well Substrate depleted volume Low-resistivity ~ 30 Ωcm High-resistivity ~1k Ωcm High-resistivity: Decrease of doping concentration in epitaxial layer. Depletion voltage: Increase the depleted volume Sensing diode

/17/25 TOWER-Jazz-Process M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March Larger depleted volumes: ⇒ Accelerated charge collection, less diffusion ⇒ Less charge smearing between pixels Aim: Full depletion of the epitaxial layer SiO 2 N+P+ P- P+ Epitaxial Layer P-Well Substrate depleted volume Low-resistivity ~ 30 Ωcm High-resistivity ~1k Ωcm High-resistivity: Decrease of doping concentration in epitaxial layer. Depletion voltage: Increase the depleted volume Sensing diode TOWER-Jazz-0.18µm process - High-Resistivity 1-8kΩcm - Depletion voltage up to 20V Modified preamplifier - Recharge diode - AC-coupled

/17/25 TOWER-Jazz 0.18µm CMOS process for imager M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March The Sensor: PEGASUS (2015) 18µm thick, 25µm pixel pitch, >1kΩcm epitaxial layer, 12 V bias voltage Cd-109-source Cu-foil Ag K α,K β Less charge smearing  Larger depletion zone

/17/25 TOWER-Jazz 0.18µm CMOS process for imager M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March The Sensor: PEGASUS (2015) 18µm thick, 25µm pixel pitch, >1kΩcm epitaxial layer, 12 V bias voltage Cd-109-source Cu-foil Ag K α,K β Less charge smearing  Larger depletion zone Trigger on neighboring pixels still helps

/17/25 Influence of the leakage current M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March Due to the non-linear response of the recharge diode at +20°C : - Limited energy resolution - Non-linear amplification  Optimizing of the pixel layout required (Pegasus-3)  Cooling to -20°C so far helps

/17/25 Cu-inlay M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March Cd-109-source Cu-foil Ag K α,K β Ag K α,K β +Cu K α Expected excess in Cu-Kα-line observed Energy resolution is σ=122eV

/17/25 Conclusion 15 Application: Real-time water analysis via X-ray fluorescence analysis  CMOS-Sensors proposed Studied two CMOS-sensors: MIMOSA-19 and Pegasus Possible above 2 keV with an energy resolution of 120…190eV At room temperature or slightly cooled conditions  Sensors seem suited for the task Outlook: Obtain higher quantum efficiency due to full depleted epitaxial layer Detailed study of high-voltage CMOS-sensors required DFG proposal submitted M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016