First measurements of the Gossipo-3 CERN, Geneve March 24, 2010. Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.

Slides:



Advertisements
Similar presentations
Topics Electrical properties of static combinational gates:
Advertisements

Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Microelectronics System Design for Chronic Brain Implants ECEN 5007 S. Johnson, V. Ganesan
MDT-ASD PRR C. Posch30-Aug-02 1 Specifications, Design and Performance   Specifications Functional Analog   Architecture Analog channel Programmable.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
FEE Perugia. A. Rivetti A FAST LARGE DYNAMIC RANGE SHAPING AMPLIFIER FOR PARTICLE DETECTOR FRONT-END A.Rivetti – P Delaurenti INFN – Sezione di Torino.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
Timepix2 power pulsing and future developments X. Llopart 17 th March 2011.
Power pulsing strategy with Timepix2 X. Llopart 10 th May 2011 Linear Collider Power Distribution and Pulsing workshop Timepix3.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
Design of the Front-end Electronics for the GOSSIPO chip. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the Netherlands CERN, July the 22 th,
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Development and Applications of the Timepix3 chip
Chapter 07 Electronic Analysis of CMOS Logic Gates
Filip Tavernier Karolina Poltorak Sandro Bonacini Paulo Moreira
Module 4 Operational Amplifier
Modern VLSI Design 2e: Chapter 3 Copyright  1998 Prentice Hall PTR Topics n Electrical properties of static combinational gates: –transfer characteristics;
FEE2006, Perugia Simultaneous Photon Counting and Charge Integrating Readout Electronics for X-ray Imaging Hans Krüger, University of Bonn, Germany University.
The design of the TimePix chip Xavier Llopart, CERN MPI-Munich, October 2006.
Gossipo-3: a prototype of a Front-end Pixel Chip for Read-out of Micro-Pattern Gas Detectors. TWEPP-09, Paris, France. September 22, Christoph Brezina.
Design & Development of an Integrated Readout System for Triple-GEM Detectors Alessandro PEZZOTTA III Year PhD Seminar, Cycle XXVIII 22 September 2015.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Update on CLICpix design
Analog Building Blocks for P326 Gigatracker Front-End Electronics
NA62 Gigatracker Working Group Meeting 23 March 2010 Massimiliano Fiorini CERN.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Power Pulsing in Timepix3 X. Llopart CLIC Workshop, January
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
A view on electronics for the prototype of the GOSSIP detector in 0.13um CMOS Technology. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
1 TimePix-2 a new and fast general-purpose MPGD readout pixel chip Jan Timmermans, Nikhef MPGD/RD-51 Workshop Nikhef, Amsterdam The Netherlands April 16,
FPGA-Based System Design: Chapter 2 Copyright  2004 Prentice Hall PTR Topics n Logic gate delay. n Logic gate power consumption. n Driving large loads.
Pixel detector development: sensor
Modern VLSI Design 3e: Chapter 3 Copyright  1998, 2002 Prentice Hall PTR Topics n Electrical properties of static combinational gates: –transfer characteristics;
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
2. CMOS Op-amp설계 (1).
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
NEWS FROM MEDIPIX3 MEASUREMENTS AND IMPACT ON TIMEPIX2 X. Llopart CERN.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
CoCo – Cockroft Walton Feedback Control Circuit Deepak G, Paul T, Vladimir G 1D. Gajanana ET On the behalf of.
Module 2 Operational Amplifier Basics
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Working Group February 03, Local Oscillator in the GOSSIPO-3 readout chip.
P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting May 25, Layout of the Front-end.
P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 31, More on the Preamplifier.
GOSSIPO-3: Measurements on the Prototype of a Read- Out Pixel Chip for Micro- Pattern Gas Detectors André Kruth 1, Christoph Brezina 1, Sinan Celik 2,
A Low-noise Front-end ASIC design based on TOT technique for Read-out of Micro-Pattern Gas Detectors Huaishen Li, Na Wang, Wei Lai, Xiaoshan Jiang 1 State.
Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 17, Specification of the On-pixel LDO for powering of the local oscillators.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossipo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPO3 prototype.
Pixel front-end development
A General Purpose Charge Readout Chip for TPC Applications
Charge sensitive amplifier
LHC1 & COOP September 1995 Report
DCH FEE 28 chs DCH prototype FEE &
MCP Electronics Time resolution, costs
Status of the CARIOCA project
Stefan Ritt Paul Scherrer Institute, Switzerland
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
Presentation transcript:

First measurements of the Gossipo-3 CERN, Geneve March 24, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands

Timepix-2 V.Gromov224/03/10 technology: 0.13μm CMOS - pixel: 60μm x 60μm - event clock: 40MHz - accuracy (bin size): 1.73ns - range: 102μs 25ns) - ToT accuracy: σ = 200e - (27ns) - ToT range: 6.4μs - Hit Counting mode - noise: σ = 70e - - fast response: 20ns (rise time) - power (goal): 100mW/cm 2 (3μW/ch) Gossipo-3: main features Front-end (preamp, comp) Ingrid preamp Pixels (preamp, comp, Threshold DAC, high resolution TDC,counters & control logic) Bias generating circuit LDO (generates controllable Power Supply Voltage for Ring oscillators )

Timepix-2 V.Gromov324/03/10 Gossipo-3: Test set-up S3 Multi IO Board (general purpose test board designed by Bonn group) USB port G3 Testboard (dedicated for Gossipo-3 chip )

Timepix-2 V.Gromov424/03/10 Gossipo-3: front-end circuit Time Uin Uin + 70mV Uin + Qin / Cfb -Time ● Isat Tfb /Cfb exp[-Time/(Cfb ● Ron Tfb )] Uout Tfb in saturationTfb in triode - no leakage compensation - constant current feedback (1nA) - high gain (1mV / fF) - low power consumption (3μW/ch) - fast response (20ns) - low noise (σ =70 e - ) - channel-to-channel threshold spread (σ =70e - no equalization) (σ = 5e - with equalization C par ≈ 10 fF Tfb Cfb =Cds+Cdg+Cdb+Cdj ≈ 1 fF Input pad (22μm x 22μm) OPAMP Discharge protection Ib = 6nA 2.4/ /2.4 U out_preamp 2nA U THR_common Vdd_ana 2.4/ /2.4 U THR_pixel Discr. Baseline recovery U out_discri Ron = 100MΩ C test ≈ 1.3 fF U test Metal-to-metal parasitic capacitance ncap C=170fF

Timepix-2 V.Gromov524/03/10 Gossipo-3: preamp output Qin = 375 e - ( 46mV ● 1.3fF= 60aC) simulations measurements Noise is very low

Timepix-2 V.Gromov624/03/10 Preamplifier output: channel-to-channel gain mismatch Channel#1 Channel#2 Channel#3 Utest ● Ctest1/Cfb1 Utest ● Ctest2/Cfb2 Utest ● Ctest3/Cfb3 Ctest and Cfb are good reproducible Feedback time constant varies a lot

Timepix-2 V.Gromov724/03/10 Front-end circuit output: Time-over-threshold mismatch Channel#1 Channel#2 Channel#3 ToT1 ToT2 ToT3 ToT channel-to- channel mismatch is around 50%

Timepix-2 V.Gromov824/03/10 Front-end circuit output: internal time delay and jitter 370 e - fast signal 1000 e - fast signal 370 e - slow signal jitter Internal delay,ns Signal size, e - ∆t min = 9ns

The front-end Main specifications:Main specifications: - low power consumption (3μW/ch) - fast response (20ns) - low noise (σ =70 electrons) - channel-to-channel threshold spread (σ =70 electrons) Vdd_ana Input stage 720 nA Ron = 30MΩ 0.48/2.4 U out_preamp 435 nA 70 nA 2.4/2.4 Preamp_in 1fF C par ≈ 10 fF 6 nA Voltage follower Feedback gm=23u C*= 6f T fb sub_preamp (0.2V) 5/0.24 2nA U THR_common Vdd_ana 2.4/ /2.4 U THR_pixel Discr. Baseline recovery U out_comp ncap C=170fF Ron = 100MΩ

Timepix-2 V.Gromov1024/03/10 Thermal Noise: measurements and simulations Measurements: Qin = 375 e - = 60mV ( 46mV ● 1.3fF= 60aC) ENC = 25e e - ●4mV / 60mV 20mV p-p → σ = 4mV 20mV 60mV Simulations: 64mV 4.2mV ENC = 24.6e e - ●4.2mV / 64mV

Timepix-2 V.Gromov1124/03/10 Thermal Noise: hand calculations Cd = Cp+Cgg T1 + Cdd Tprot + Cjd Tprot = 15fF 7.4fF+5.7fF+0.4fF + 1fF Cl = Cgg T4 + Cdd T3 + Cjd T3 +Cdd T2 + Cjd T2 = + Cp= 6.5fF 1.1fF+0.6fF+1.7fF + 0.4fF +1.1fF + 1.6fF=6.5fF Cf = 1fF gl = gds T3 +gds T1 ●gds T3 / gm T3 = 0.22u 0.17u + 1u ● 1u / 20u ENC 2 = γ ● k ● T ● ( Cd + Cf ) ● Cf / Cl = 9.6 ● ≈1 =1.3 ● ≈300 ≈15 ● ≈1 ● ≈6.5 ● ENC ≈ 20e -

Timepix-2 V.Gromov1224/03/10 Thermal Noise: σ n = 4mV can be true? =1.3 ● ≈300 Uout C d =15fF Cf= 1fF H(jw) = 4kT ● gm -1 ●df = S n ●df H(jw) = [gm/gl] / [1+jw●Cl / gl] w 0 dB gm / Cl gm / gl U n out(jw) = U n ● H(jw) ● {1+ H(jw) ● [1+Cd/Cf] -1 } -1 = S n ● ∫ │ h(j2πf) │ 2 df = 4 ● k ● T ● (1/gm) ● ∫ │ h(j2πf) │ 2 df = 8.6 ●10 -6 ≈ 3mV 1+ Cd/Cf DC open loop gain DC closed loop gain w cut-off 1.1 ●10 10 =20u = 0.22u ≈6.5 ● =20u β h(jw) |H(jw)| |h(jw)| low Cf |h(jw)| high Cf Freq., Hz [ ∫ │ h(j2πf) │ 2 df ] 0.5 Cf = 1fF Cf = 2fF Cf = 4fF Cf = 8fF U n out ~Cf -1/2

Timepix-2 V.Gromov1324/03/10 Threshold mismatch Vdd_comp Comparator 900 nA Inverters Comp_inComp_out 0.8/1.2 Thr Vbias T1 0.9/0.24 T2 0.9/ / / / 0.24 Measurements: ∆U Thr = 50mV p-p σ = 15mV Simulations: σ = 5.6mV ● √ 2● (W T1,2 ● L T1,2 ) -1 σ = 17mV (100e - ) 50mV U Thr Entries Preamp_out 0 nA

Timepix-2 V.Gromov1424/03/10 Qin measurements: ToT method Uout charging discharging Uout,V Time, μsec C par =15fF Cfb= 1fF OPAMP Ib = 1nA Qin Qin=400e - … 20000e - ToT threshold Uin,V Uin A: Qin is deposit on Cfb : ∆Uout=0.85V-0.42V ∆Qin= ∆Uout ● Cfb= 0…3 Ke - Uin=420mV Uout = 420mV…850mV B: Qin is deposit on C par : ∆Uin=0.42V-0V ∆Qin= ∆Uin ● C par = 0…30 Ke - Uin=420mV…0V Uout = 850mV Ib discharges the capacitors ToT dynamic range ~ C par ToT (Qin) = Qin / Ib

Timepix-2 V.Gromov1524/03/10 Time-over-threshold measurements Qin, e - ToT, ns measurements simulations channel-to-channel ToT mismatch ~ 40% threshold ToT mismatch ~ 40% Monte Carlo simulation: mismatch only Uout,V Mismatch of the feedback current Ib limits reproducibility of the TOT slope ~ 0.2ns/e -

Timepix-2 V.Gromov1624/03/10 ToT measurements: how to improve mismatch Tfb OPAMP Ib = 6nA 2.4/ /2.4 Uout Qin Uin Id sat = 2●n●β●U T 2 ● exp[(Ugs- Uthr)/(n●U T ) ] d(Id sat )/dβ = Id sat /β → σ{∆(Id sat )/Id sat }=σ{∆β/β} = 1.82% / √(W ● L ) d(Id sat )/dUthr = Id sat / (n●U T )] → σ{∆(Id sat )/Id sat } = σ{∆ Uthr / n●U T } = 2.86mV/[30mV ● √(W ● L )]= 9.5% / √(W ● L ) = 9% =2.4μm =0.48μm → A β [% / μm] !!! Statistical spread ~ 1 / √(W Tfb ● L Tfb ). By making the feedback transistor larger we improve matching but increase Csd → gain degradation

Timepix-2 V.Gromov1724/03/10 Accuracy of the ToT measurements σ(jitter) = σ(Uout noise )/ [dU/dt] ≈ 4mV ≈ 0.3mV/ns ≈12ns time jitter = 80ns threshold Preamp Output Comparator Output dU/dt = 0.3mV/ns noise = 4mV RMS jitter ≈ 80ns p-p (400e - )

Timepix-2 V.Gromov1824/03/10 Ring oscillator configurations Voltage controlled RO RO_out 0.78/0.18 RO_en RO_cntr NAND RO_out RO_en RO_cntr NAND Vdd Current controlled RO 2.1/ / / / RO_en RO_cntr NAND Vdd Current controlled “differential” RO 48/ / / RO_out U_cntr I_cntr start Start-up distortions

Timepix-2 V.Gromov1924/03/10 Voltage controlled Ring oscillator RO_out 0.78/0.18 RO_en RO_cntr NAND 2.1/ U_cntr I_cntr U_cntr V, slope T_osc, ns ps / mV I_cntr, μA μA / mV Control characteristic Basic properties SpecificationValueComments ∆T_osc / ∆Vdd (∆U_cntr)- 4.7ps / mV ( 0.3% / mV) ∆U_cntr < 20mV is tolerable → ∆T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC ∆T_osc / ∆Temp+0.32ps / ° C (0.02% / ° C) T_osc, U_cntr (Fast corner=6, FFF, 27°C)1.71ns / 614mV T_osc, U_cntr (Typical corner=1, TT, 27°C) 1.72ns / 737mV T_osc, U_cntr (Slow corner=7, SSF, 27°C)1.7ns/ 930mV Channel-to-channel mismatch (Total active area (W●L) of the delay FET’s 6% 5.18 μm 2 T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC

Timepix-2 V.Gromov2024/03/10 Current controlled Ring oscillator Control characteristic Basic properties SpecificationValueComments ∆T_osc / ∆Vdd-0.5ps / mV (0.04% / mV) ∆U_cntr < 150mV is tolerable → ∆T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC ∆T_osc / ∆V wire 13ps /mV (0.8%/mV) ∆V wire < 7mV is tolerable → ∆T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC ∆T_osc / ∆Temp+0.64ps / ° C (0.04% / ° C) T_osc, I_cntr (Fast corner=6, FFF, 27°C)1.7ns / 31 μA T_osc, I_cntr (Typical corner=1, TT, 27°C )1.7ns / 43μA T_osc, I_cntr (Slow corner=7, SSF, 27°C)1.7ns / 62 μA Channel-to-channel mismatch (Total active area (W●L) of the delay FET’s 6% 5.18 μm 2 T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC RO_out RO_en RO_cntr NAND Vdd 24/ / / U_cntrI_cntr R_wire I_cntr, μA slope T_osc, ns ps/μA U_cntr, V mV/μA gds active =13μ gm active = 600u gds_sat active =170mV 24/0.4

Timepix-2 V.Gromov2124/03/10 Current controlled “differential” Ring oscillator Control characteristic Basic properties I_cntr R_wire RO_en RO_cntr NAND Vdd 48/ / / RO_out U_cntr I_cntr I_cntr, μA slope T_osc, ns ps/μA U_cntr, V mV/μA SpecificationValueComments ∆T_osc / ∆Vdd-0.3ps / mV (0.02% / mV) ∆U_cntr < 300mV is tolerable → ∆T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC ∆T_osc / ∆V wire 16ps /mV (1%/mV) ∆V wire < 6mV is tolerable → ∆T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC ∆T_osc / ∆Temp+0.64ps / ° C (0.04% / ° C) T_osc, I_cntr (Fast corner=6, FFF, 27°C)1.72ns / 75 μA T_osc, I_cntr (Typical corner=1, TT, 27°C )1.7ns / 105μA T_osc, I_cntr (Slow corner=7, SSF, 27°C)1.71ns / 155 μA Channel-to-channel mismatch (Total active area (W●L) of the delay FET’s 4% 2.75 μm 2 T_osc < 6% (less than one T_osc (1.71ns) for 16 clocks in a 4 bit TDC gds active =30μ gm active = 1.3m gds_sat active =180mV 48/0.4

Timepix-2 V.Gromov2224/03/10 Choice of the Ring oscillator Comparison table SpecificationVoltage-controlled Ring Oscillator Current-controlled Ring Oscillator Current-controlled “differential” Ring Oscillator Sensitivity to the Power Supply Voltage shift ∆T_osc / ∆Vdd 0.3% / mV (Control voltage) 0.04% / mV Best 0.02% / mV Good Sensitivity to the current-related Voltage drop ∆T_osc / ∆V wire 0.3% / mV Normal 0.8%/mV High 1%/mV High Sensitivity to the Temperature instability ∆T_osc / ∆Temp 0.02% / ° C Low 0.04% / ° C Good 0.04% / ° C Good Channel-to-channel mismatch6% p-p Acceptable 6% p-p Acceptable 4% p-p More than acceptable Current (when active)42μA Low 43μA Low 105μA High Areaminimumincreased by PFET (24μm x 0.4μm)increased by PFET (48μm x 0.4μm)

Timepix-2 V.Gromov2324/03/10 Ring oscillator: mismatch and power Input Output 3W/L R on =1/[µ ● C ox ● (W/L) ● (V gs -V thr )] Input GND VDD Output DELAY β C*C* N inverters σ(∆ β/ β) = 2% ● (W ● L) -0.5 σ(∆ Vthr) = 5mV ● (W ● L) -0.5 σ(∆DELAY/DELAY) ≈ 2% ● (N●W ● L) -0.5 W/L 3W/L W/L DELAY ≈ N●3●R ox ●C* R on ~ L/W C * ~ L ● W DELAY = R ox ● C* = inv (W ) Power ~ C* ~ W Area ~ W Mismatch ↓ Power ↑ ← W↑ Area ↑ = 0.78μ = 0.18μ = 10≈ 2%

Timepix-2 V.Gromov2424/03/10 Voltage drop effect Pixel_1 Pixel_2 Pixel_128 Pixel_255 Pixel_ cm 50Ω Bus (Vdd_osc) 10μm width M1 R = 0.07Ω●0.7cm/10μm = 50 Ω ∆U = 0.5 ● 50Ω ● 155μA = 4mV 0.7cm 50Ω I vdd worst case = 62μA (voltage –controlled RO) I vdd worst case = 66μA (current –controlled RO) I vdd worst case = 155μA (current –controlled “differential” RO)

Timepix-2 V.Gromov2524/03/10 Power supply source for the Ring Oscillators Input conditions: Sensitive area: 1.4cm x 1.4cm (1.96cm 2 ) Pixel size: 55μm x 55μm Number of pixels: 256 x 256 (65 536) Track occupancy: 12 (cm 2 ●BX) -1 Tracks per chip per BX (Ntr) : 24 Fluctuation of the number of the tracks per chip per BX: σ tr = √N tr = √24 ≈ 5 Average primaries per track: 10 Active pixels (number of primaries) per BX (Nact): 240 Current per active pixel (Iosc): 100μA Specification of the LDO: Average load current: Iav = 24mA = Nact● Iosc = 240●100μA Peak load current (worst case): Ipeak = 44mA= Iosc ●10 ●(N tr +4●σ tr )= 100μA ● 440 Output impedance: Zout = 7 Ω= ∆150mV / ∆ 20mA tolerable voltage drop load current jump (worst case) 55μm 256pixels · 55μm =1.4cm Readout chip N tr =24 Entries Standard deviation σ tr ≈ 5 The highest track occupancy: N tr +4●σ tr = 44

Timepix-2 V.Gromov2624/03/10 Gossipo-3:on-chip voltage regulator Functionality - tunes oscillation frequency - power supply ripple rejection - temperature compensation - low output impedance in wide frequency band Opamp Off-chip cap 10μF Vdd=1.2V 1.14k 2k U vdd_osc (0.6V…1.1V) Uref

Timepix-2 V.Gromov2724/03/10 Oscillator inverters powered by vdd_osc (0.64V…1.1V) Gates powered by vdd_dig=1.2V Coexistence of 1.2V logic domain and 0.64V logic domain. Level shifter (40μA extra current in the time of oscillation activity) Gossipo-3:oscillator circuit start_osc stop_osc

Timepix-2 V.Gromov2824/03/10 Gossipo-3:oscillator circuit on the pixel Oscillator 25μm x 10 μm Logic: counters & control Analogue Front-end DAC

Timepix-2 V.Gromov2924/03/10 Gossipo-3 : ideal oscillation frequency en_osc start_oscstop_osc out_osc 25ns (max) Final State of the Counter State = 14 (max for LFSR) delay fb delay fb = 25ns/29 = 0.862ns → T osc ideal = 2 ● delay fb = 1.724ns arrival time of the stop_osc signal T osc ideal

Timepix-2 V.Gromov3024/03/10 Gossipo-3: operation of the oscillator circuit en_osc (start) stop out_osc state “0” out_osc state “1” stop out_osc state “1” stop out_osc state “2” out_osc state “2” Counter clock

Timepix-2 V.Gromov3124/03/10 Gossipo-3: operation of the oscillator circuit net_A net_B net_C net_D stop_osc start_osc out_osc 25ns (max) clk +125ps ?? stop_osc start_osc +60ps net_A net_D net_B +60ps +820ps +120ps net_C out_osc +60ps

Timepix-2 V.Gromov3224/03/10 Gossipo-3: threshold DAC Analogue Front-end DAC No power consumption I tail =5μA U THR_pixel a _a b _b c _c On-pixel Switch tree (19.5μm x 3.7μm) with 30 FET’s (4bits) Voltage generator shared between pixels R 16 =1.5kΩ U THR_com =0.4V R 15 =1.5kΩ U1=0.408V U2=0.416V U16=0.525V Minimum size PFET’s : W/L= 0.16μm / 0.12 μm Vgs on = 0.4V / Vthr =0.51V → Ron= 1.7 MΩ !!! Ron=1.7MΩ Sensitive to the leakage currents (parasitic loads) leakage Possible solution: replace pfets (Ron=1.7MΩ) with nfets (Vgs on = 0.475V / Vthr =0.676V → Ron=10kΩ)

Timepix-2 V.Gromov3324/03/10 Timepix2: charge sensitive preamplifier Timepix2 Pixel size55 µm x 55 µm Analog pixel area (see Figure 2)55 µm x [10…20] µm Pixel matrix256 x 256 Input chargeBipolar (h+ and e-) Leakage current compensationYES Peaking time≤ 25ns Return to zero (Tunable)< 5 Ke- TOT linearity and range< 500 Ke- Preamp output linear dynamic range< 40 Ke- Return to zero full chip spread (TOT spread)< 5% ENC (σ ENC )~75 e- Detector capacitance< 50 fF # Thresholds1 Discriminator response time< 2ns Full chip minimum detectable charge< 500 e- Threshold spread after tuning (see Figure 1)< 30 e- Pixel analog power consumption< V Uout = 0.6V Cpar Cfb Ib Qin Uin = 0.6V It Vdd=1.2V Bipolar (h+ and e-) → Output Dynamic Range = 0.5V (0.6V ± 0.5V with Vdd=1.2V, Vds sat =0.1V) Preamp output linear dynamic range = 40ke - (6fC) → Cfb = 12fF = 6fC / 0.5V TOT linearity and range = 500ke - (80fC) → Cpar = 145fF = (80fC-6fC) / 0.5V (Uin > +0.1V) Detector capacitance: Cpar < 50fF (contradiction) ENC (σ ENC ) = 75e - (0.012fC) → Cl = 51fF ENC= [k ● T ● ( Cd + Cf ) ● Cf / Cl] 0.5 = [1.3● ● 300 ● (145● ● ) ● 12● / 51 ● ] 0.5 Peaking time ≤ 25ns → τ a = 5ns → gm = 133μ → It= 5μA = gm / 27 → Power preamp = 6μW τ a = [Cl/gm]●( Cd + Cf ) ● Cf Return to zero (Tunable) < 5 Ke- (0.8fC) → Ib sat = 0.8nA = 0.8fC / 1μs Return to zero full chip spread (TOT spread) < 5% → σ{∆(Ib sat )/Ib sat = 1% → W ● L = 100 μm 2 Cl σ{∆(Ib sat )/Ib sat } = σ{∆ Uthr / n●U T } = 2.86mV/[30mV ● √(W ● L )]= 9.5% / √(W ● L )

Timepix-2 V.Gromov3424/03/10 Timepix2: fast discriminator Vdd_comp Voltage comparator: Gossipo3 900 nA In 0.8/1.2 Thr Vbias T1 0.9/0.24 T2 0.9/ / / / nA Thr Vb2 Vb3 Vb4 In Out 0.3/ / / / /6.13 Current comparator: Medipix3 Low High 1μA ??? 0.2μA ??? 50nA ???