Measuring Entanglement Entropy in a Many-body System

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Dynamics of Spin-1 Bose-Einstein Condensates
“Characterizing many-body systems by observing density fluctuations” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA,
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Ultrafast Pulsed Laser Gates for Atomic Qubits J OINT Q UANTUM I NSTITUTE with David Hayes, David Hucul, Le Luo, Andrew Manning, Dzmitry Matsukevich, Peter.
Anderson localization in BECs
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard.
Spinor condensates beyond mean-field
Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Collaborators: Ehud Altman,
E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard, Freiburg), E. Dalla Torre (Weizmann), T. Giamarchi (Geneva), M. Lukin (Harvard), A.Polkovnikov.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Eugene Demler Harvard University Collaborators:
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Quantum Simulation MURI Review Theoretical work by groups lead by Luming Duan (Michigan) Mikhail Lukin (Harvard) Subir Sachdev (Harvard) Peter Zoller (Innsbruck)
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Eugene Demler Harvard University Robert Cherng, Adilet Imambekov,
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Strongly correlated systems: from electronic materials to cold atoms Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter,
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Magnetism of spinor BEC in an optical lattice
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
CLARENDON LABORATORY PHYSICS DEPARTMENT UNIVERSITY OF OXFORD and CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE Quantum Simulation Dieter.
Ana Maria Rey March Meeting Tutorial May 1, 2014.
Bose-Fermi mixtures in random optical lattices: From Fermi glass to fermionic spin glass and quantum percolation Anna Sanpera. University Hannover Cozumel.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Quantum information with cold atoms Zheng-Wei Zhou( 周正威) Key Lab of Quantum Information, CAS, USTC October, 2009KITPC.
CLARENDON LABORATORY PHYSICS DEPARTMENT UNIVERSITY OF OXFORD and CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE Quantum Simulation Dieter.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Non-equilibrium dynamics of ultracold bosons K. Sengupta Indian Association for the Cultivation of Science, Kolkata Refs: Rev. Mod. Phys. 83, 863 (2011)
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Exploring many-body physics with synthetic matter
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Agenda Brief overview of dilute ultra-cold gases
Quantum simulations of high-energy physics models MAX-PLANCK INSTITUT FÜR PHYSIK January 27th, 2015 In collaboration with J. Pachos (Leeds) S. Kühn B.
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum Information and Everything.
Anderson localization of weakly interacting bosons
Analysis of quantum noise
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Part II New challenges in quantum many-body theory:
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov.
Strongly correlated quantum walks in optical lattices
Computational approaches for quantum many-body systems
Presentation transcript:

Measuring Entanglement Entropy in a Many-body System K. Rajibul Islam MIT-Harvard Center for Ultracold Atoms Caltech Mar 08, 2016 HARVARD UNIVERSITY  MIT CENTER FOR ULTRACOLD ATOMS

Strongly interacting quantum systems Wikipedia.org High Temperature superconductor Quark Gluon ‘plasma’ Microscopic description? Spin network Interacting atoms Macroscopic phenomenon? Simulating quantum matter on computers?

Quantum Superposition Exponential growth of Hilbert space Exponential growth of Hilbert space For N qubits - No. of states = 2N N = 40 240 ~ 1 Tb Entanglement Growth of Entanglement – hard to compute Solving Quantum dynamics of interacting spin models currently limited to about 30 - 40 spins.

Quantum Simulation 2S1/2 = |1,0 Spin states can be initialized and Feynman, International Journal of Theoretical Physics, Vol 21, No. 6/7, 1982 Lloyd, Science, Vol 273, No. 5278, 1996 2S1/2 = |0,0 = |1,0 qubits Spin states can be initialized and Individually detected Long coherence – up to 15 minutes!

Quantum Simulation : Platforms Trapped ions Nature Physics 8, 277–284 (2012)  Polar molecules Nature 501, 521 (2013) Neutral atoms in optical lattices Nature Physics 8,  267–276 (2012)  Photonic networks Nature Physics 8,  285–291 (2012) Superconducting circuits Nature Physics 8, 292–299 (2012)  Defects in diamonds Physics Today 67(10), 38(2014)

? Quantum Simulation : Trapped Ions Ising + ‘Bottom-up’ approach Tunable interactions – quantum Ising, XY, XYZ … ? Frustrated!! Ising + Entanglement in the ground state K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe Nature 465, 590 (2010).

Quantum Simulation : Trapped Ions ‘Quantum phase transitions’ 𝐽 𝑖,𝑗 ≈ 𝐽 0 /|𝑖−𝑗| N = 10 R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J. K. Freericks, and C. Monroe Nature Communications 2:377 (2011) R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards, C.-C. J. Wang, J. K. Freericks, and C. Monroe, Science 340, 583 (2013).

Superconducting circuits Quantum Simulation : Platforms Trapped ions Nature Physics 8, 277–284 (2012)  Neutral atoms in optical lattices Nature Physics 8,  267–276 (2012)  Superconducting circuits Nature Physics 8,  292–299 (2012)  NV defects in diamonds Physics Today 67(10), 38(2014) Photonic networks Nature Physics  8, 285–291 (2012)

Quantum gas microscope Bakr et al., Nature 462, 74 (2009), Bakr et al., Science.1192368 (June 2010) Previous work on single site addressability in lattices: Detecting single atoms in large spacing lattices (D. Weiss) and 1D standing waves (D. Meschede), Electron Microscope (H. Ott), Absorption imaging (J. Steinhauer), single trap (P. Grangier, Weinfurter/Weber), few site resolution (C. Chin), See also: Sherson et al., Nature 467, 68 (2010) 9

Single site parity Imaging

Quantum gas microscope High aperture objective NA=0.8 High resolution imaging 2D quantum gas of Rb-87 in optical lattice Hologram for projecting optical lattice 11

Bose Hubbard Model U/J tunneling J interaction U Superfluid Mott insulator Superfluid U/J Bakr et al., Science. 329, 547 (2010)

Projecting arbitrary potential landscapes hologram Fourier hologram Image: EKB Technologies objective 2D quantum gas of Rb-87 in optical lattice Thesis : P. Zupancic (LMU/Harvard, 2014) 13

Arbitrary beam shaping Weitenberg et al., Nature 471, 319-324 (2011) Zupancic, P., Master’s Thesis, LMU Munich/Harvard 2013 Cizmar, T et al., Nature Photonics 4, 6 (2010) High-order Laguerre Modes Laguerre-Gauss profile 1 10-1 10-2 10-3

A bottom-up system for neutral atoms (Single shot image)

Single-Particle Bloch oscillations F P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner Science 347, 1229 (2015)

Single-Particle Bloch oscillations F Temporal period , spatial width Delocalized over ~14 sites = 10μm. Revival probability 96(3)% P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner Science 347, 1229 (2015)

Entanglement in Many-body Systems Novel states of matter: Order beyond simple broken symmetry Example - Topological order, spin liquid, fractional quantum Hall - characterized by quantum entanglement ! Quantum criticality Quantum dynamics … Challenge: Entanglement not detected in traditional CM experiments Entanglement in ultra-cold atom synthetic quantum matter?

Entanglement in Many-body Systems A B Many-body system: Bipartite entanglement Product state: e.g. Mott insulator Entangled state: e.g. Superfluid

Entanglement Entropy TRACE A B Tr( 𝜌 𝐴 2 ) =1 <1 Reduced density matrix: Product state  Pure state Entangled state  Mixed state Tr( 𝜌 𝐴 2 ) Quantum purity = =1 <1 𝑆 2 𝜌 𝐴 =− log Tr( 𝜌 𝐴 2 ) Renyi Entanglement Entropy

Entanglement Entropy TRACE A B Tr( 𝜌 𝐴 2 ) =1 <1 Reduced density matrix: Product state  Pure state Entangled state  Mixed state Tr( 𝜌 𝐴 2 ) Quantum purity = =1 <1 Many-body Hong-Ou-Mandel interferometry Alves and Jaksch, PRL 93, 110501 (2004) Mintert et al., PRL 95, 260502 (2005) Daley et al., PRL 109, 020505 (2012)

No coincidence detection Hong-Ou-Mandel interference No coincidence detection for identical photons Hong C. K., Ou Z. Y., and Mandel L. Phys. Rev. Lett. 59 2044 (1987)

Beam splitter operation: Rabi flopping in a double well P (R) L R -i +i Also see: Kaufman A M et al., Science 345, 306 (2014) Without single atom detection: Trotzky et al., PRL 105, 265303 (2010) also Esslinger group

Two bosons on a beam splitter Hong-Ou-Mandel interference Beam splitter

limited by interaction measured fidelity: Beam splitter Beam splitter P(1,1) 4(4)% 96(4)% limited by interaction measured fidelity: Time in double well (ms) Also see : Kaufman A M et al., Science 345, 306 (2014), R. Lopes et al, Nature 520, 7545 (2015)

Quantum interference of bosonic many body systems ? How “identical” are the particles? vs. How “identical” are the states? If , deterministic number parity after beam splitter Alves and Jaksch, PRL 93 (2004) Daley et al., PRL 109 (2012)

Quantum interference of bosonic many body systems

Making two copies of a many-body state

Measuring many-body entanglement Mott Insulator Locally pure Product State Globally pure Superfluid Locally mixed Entangled Globally pure

Measuring many-body entanglement Mott Insulator always even  locally pure HOM even even  globally pure Superfluid odd or even  locally mixed HOM  Entangled! even even  globally pure Ref: Alves C M, Jaksch D, PRL 93, 110501 (2004), Daley A J et al, PRL 109, 020505 (2012)

Entanglement in the ground state of a Bose-Hubbard system Mixed H Purity = Parity Renyi entropy Purity Beam splitter complete 2-site 1-site Pure Rajibul Islam et al, Nature 528, 77 (2015) U/J Mott insulator Superfluid Entanglement in optical lattice systems: M. Cramer et al, Nature Comm, 4 (2013), T. Fukuhara et al, PRL 115, 035302 (2015)

Entanglement in the ground state of a Bose-Hubbard system Mixed H Purity = Parity Renyi entropy Purity Beam splitter complete 2-site 1-site Pure Rajibul Islam et al, Nature 528, 77 (2015) U/J Mott insulator Superfluid

Entanglement in the ground state of a Bose-Hubbard system Mixed H Purity = Parity Renyi entropy Beam splitter complete 2-site 1-site Pure Rajibul Islam et al, Nature 528, 77 (2015) U/J Mott insulator Superfluid

Entanglement in the ground state of a Bose-Hubbard system Mixed H Purity = Parity Renyi entropy Purity Beam splitter complete 2-site 1-site Pure Rajibul Islam et al, Nature 528, 77 (2015) U/J Mott insulator Superfluid

Entanglement in the ground state of a Bose-Hubbard system Renyi entropy complete 2-site 1-site U/J Mott insulator Superfluid

Mutual Information IAB IAB = S2(A) + S2(B) - S2(AB) Renyi entropy IAB Mutual Information Boundary Area U/J Mott insulator Superfluid

Non equilibrium: Quench dynamics Beam splitter

Non equilibrium- Quench dynamics Outlook: Non equilibrium- Quench dynamics Greiner group - unpublished

Scaling of entanglement entropy and mutual information – probe critical points, violation of area law etc. Dynamical phenomena with entanglement – MBL phase. Overlap of two wave functions Sensitivity to perturbation signaling quantum phase transitions. Higher order Renyi entropies by interfering more than two copies. Ψ1 Ψ2

A ‘quantum gas microscope’ for ions

Thank you!! Theory Experiments Harvard Philipp Preiss Ruichao Ma Eric Tai Matthew Rispoli Alex Lukin Markus Greiner Maryland Kihwan Kim (Now at Tshinhua, China) Ming-Shien Chang (now at Academia Sinica, Taiwan) Emily Edwards Wes Campbell (now at UCLA) Simcha Korenblit (now at Hebrew University) Crystal Senko (now at Harvard) Jake Smith Aaron Lee Chris Monroe Guin-Dar Lin (Michigan) Luming Duan (Michigan) Joseph C.-C. Wang (Georgetown) Jim Freericks (Georgetown) Changsuk Noh (Auckland) Howard Carmichael (Auckland) Andrew Daley (strathclyde) Peter Zoller (Innsbruck) Eugene Demler (Harvard)