H-pT ASIC A.The logic of H-pT ASIC 1. overview 2. matrix, encoder, selector… B. Test result 1. verification 2. electrical characteristics C. Usage
HPT PS PP SL G-LINK Optical ASD LVDS Setting of High-pT ASIC and boards Block diagram of end-cap muon level-1 trigger system
6 to 2 selector triplet-decoder doublet-decoder 6 to 2 selector delay controlH/L selector output A output B doublet in triplet in sub matrix unit High-pT ASIC Block Diagram Primary selector sub matrix unit encoder delay control
Primary selector sub matrix unit encoder doublet in triplet in 6 to 2 selector sub matrix unit Selecting highest 2 hits If the same pT, ASIC chooses upper one. Selecting the highest pT hit corresponding to centered one 6 to 2 sel H/L selector H/L Selector H has 1 st priority, pT is 2 nd priority. HHLL=HH HLL=HL LL=LL From HpT From LpT
/- 44 22 11 for the wire/strip doublet input hit for the wire triplet input hit8421 for the strip triplet input for example: = 7, = no hit, = 32(max), = 1(min) for example: = 8, = no hit, = 16(max), = 1(min) for example: means no hit, means pos = 0, pT = +0 Using 5 to 32bit decoder and 3 to 8bit decoder Using 4 to 16bit decoder Using 5 to 32bit decoder
oahloaid0oaid1oaid2oaposoasigoaq0oaq1oaq2oaq3 obhlobid0obid1obid2obposobsigobq0obq1obq2obq3 primary output secondary output hit ID (oxid) 0101 position (oxpos) 000 = no hit No hit = -1 = +1 = -2 = for example Output Data Format 1:HpT 0:LpT doublet triplet
signal nameremarks dj Select JTAG / VME for delay setting : dj=1 is enabling JTAG control. orsw or function enable with orsw=0. This function is effect on strip mode. wors mode switch: working on wire mode with wors=0 and on strip mode with wors=1. invswDC balanced input mode on (invsw=1) rst_reset internal registers (rst_=0) dset delay data set by rising edge of iclk; this function is effect with dj=0 and dxr. ASIC Control Signal LVDS Serializerinvsw= dset
Delay Control 3bit delay controlled by JTAG or VME This ASIC has 3bit X 7 delay for 7 0.5CLK 2 way setting method of delay registers JTAG : dj=1, data from JTAG VME : dj=0, data from VME, set by dset From doublet From triplet wire mode
register nameinstruction code delay_block0 (d0r) y delay_block1 (d1r) y delay_block2 (d2r) y delay_block3 (d3r) y delay_block4 (d4r) y delay_block5 (d5r) y delay_block6 (d6r) y g-link_control (3bit-reg) y sample/preload extest bypass *r: 3bit register (r=a,b,c) *y: y=0(read)/1(write) JTAG Register y=0 mode will be used in read-back. TDITDO Delay Block2
All the registers of H-pT ASIC are voting structure MAJ XOR SEU OUT IN If there is a SEU on a register, we can detect with SEU-pin OUTSEU example
Costs for mass-production of H-pT ASIC \2,550 = € = Geometry Ball Grid Array 256-pins
Pin spec. of H-pT ASIC # of input pin 54 (doublet-in) 60 (triplet-in) 3 (TDI, TMS, TCK) 2 (clk, reset) 21 (delay control) 5 (inv, or, ws, dset, dj) total 145 # of output pin 10 (A-out) 10 (B-out) 1 (SEU) 1 (TDO) 3 (for g-link control) total 25
Test Result
Test Setup for verification test HPT Test Board TOM (FIFO) PPG50 (Pattern Gen) LVTTL PPG50 = pattern generator ROD = output-data storage PC = simulator and comparator PC Test bit- pattern compare
tracktest patternError 119, ,7120 Matrix Verification Checking List wire tracktest patternError 119, ,7120 strip Delay ASIC Control (dc, reset, or, w/s, dj, dset)
compare Test bit- pattern Trigger System Simulation Trigger System Hardware Test Setup for connection test JTAG Control Checking List
Timing Characteristics <1.0<1.0ns iclk Input data 32 < t d < 34 ns iclk Outgoing data data 33ns << 3clocks (TDR) setup/hold time typical delay
clock nameminimumtypicalmaximum system clock (iclk) MHz50MHz* jtag clock (tck)--20MHz -typical power consumption (40.08MHz) 148mW -minimumtypicalmaximum Supplied voltage 2.2V3.3V3.7V Electrical Characteristics * Limited by test system, PPG50
Board Design
EO- CONV G-LINK LVDS Rx HpT ASIC Optical OUT LVDS IN For the wire board EO- CONV G-LINK LVDS Rx HpT ASIC Optical OUT LVDS IN For the Strip board TC7MA157 FK H/LID POS+/-pT3pT2pT1pT0 if pT > 0, OUT = no hit Output Format
VME operation HPt ASIC G HPt ASIC G G HPt ASIC G HPt ASIC Clock, JTAG, and reset EWD 0 EWT 0 Optical Fiber Doublet 18-bit → serialized LVDS Triplet 18-bit → serialized LVDS 9U-VME BOARD High-pT Board (Endcap-Wire) Sector Logic EWT 5 EWT 6 EWD 7 EWD 8 EWD 9 EWD 1 EWD 2 EWD 3 EWT 1 EWT 2 EWD 4 EWD 5 EWD 6 EWT 3 EWT 4 Sector Logic Sector Logic Sector Logic LVDS Rx
VME operation HPt ASIC HPt ASIC HPt ASIC HPt ASIC Clock, JTAG, and reset Sector Logic Sector Logic Sector Logic LVDS Rx Optical Fiber Doublet 18-bit → serialized LVDS Triplet 2x20-bit → serialized LVDS High-pT Board (Endcap-Strip) EST1 EST0 ’ EST0 Sector Logic ESD3 ’ ESD4 ’ EST1 ’ ESD0 ‘ ESD1 ‘ ESD2 ‘ ESD3 ESD4 ESD0 ESD1 ESD2 9U-VME BOARD G G G G TC7MA157FK
VME operation HPt ASIC Clock, JTAG, and reset Sector Logic Sector Logic LVDS Rx Optical Fiber Doublet 18-bit → serialized LVDS Triplet 18/20-bit → serialized LVDS High-pT Board (Forward) FSD0 FST0 Sector Logic FWT0 FWT1 FWD3 FWD0 FWD1 FWD2 9U-VME BOARD HPt ASIC HPt ASIC FWT2 FWT3 HPt ASIC G G G TC7MA157FK
SUMMARY All the functions of H-pT ASIC have been verified. The electrical characteristics have been checked. We have designed 3 H-pT boards available