MIMO Simulation Tutorial

Slides:



Advertisements
Similar presentations
MIMO Communication Systems
Advertisements

Prakshep Mehta ( ) Guided By: Prof. R.K. Shevgaonkar
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
NEWCOM – SWP2 MEETING 1 Impact of the CSI on the Design of a Multi-Antenna Transmitter with ML Detection Antonio Pascual Iserte Dpt.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
EE359 – Lecture 16 Outline MIMO Beamforming MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver Design Maximum-Likelihood, Decision Feedback, Sphere Decoder.
Noise Cancelation for MIMO System Prepared by: Heba Hamad Rawia Zaid Rua Zaid Supervisor: Dr.Yousef Dama.
Mohammad Jaber Borran, Mahsa Memarzadeh, and Behnaam Aazhang June 29, 2001 Coded Modulation for Orthogonal Transmit Diversity.
Mattias Wennström Signals & Systems Group Mattias Wennström Uppsala University Sweden Promises of Wireless MIMO Systems.
IERG 4100 Wireless Communications
Meeting Report Gill Aug. 24, Letter -- simulation Sum rate DIA-MMSE 2 DIA-MMSE: Since DIA is suboptimal, it should be operated for Tx first, then.
10 th MCM - Novi Sad, March 2006 Joaquim Bastos ( ) 1 The information in this document is provided as is and no guarantee or warranty.
1 CODING FOR MULTIPLE ANTENNAS WITH LINEAR AND NONLINEAR (BLAST) INTERFACES DIMACS WORKSHOP, OCTOBER 2002 EZIO BIGLIERI (work done with A. Nordio, G. Taricco,
Multiple-input multiple-output (MIMO) communication systems
APPLICATION OF SPACE-TIME CODING TECHNIQUES IN THIRD GENERATION SYSTEMS - A. G. BURR ADAPTIVE SPACE-TIME SIGNAL PROCESSING AND CODING – A. G. BURR.
"Spatial Multiuser Access OFDM With Antenna Diversity and Power Control” Mobiles, M Ti Antennas for ith user Base Station, M R antennas.
Space Time Block Codes Poornima Nookala.
Coding and Information Theory Lecture 15: Space Time Coding and MIMO:
Spatial Diversity and Multiuser Diversity in Wireless Communications Bengt Holter Dept. of Electronics and Telecommunications NTNU IKT-2010 seminar, Lillestrøm,
12- OFDM with Multiple Antennas. Multiple Antenna Systems (MIMO) TX RX Transmit Antennas Receive Antennas Different paths Two cases: 1.Array Gain: if.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
Doc.: IEEE /1391r0 Submission Nov Yakun Sun, et. Al.Slide 1 About SINR conversion for PHY Abstraction Date: Authors:
MULTIPLE INPUT MULTIPLE OUTPUT SYSTEMS (MIMO)
Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network Dong-Hyun Ha Sejong University.
Lecture 9,10: Beam forming Transmit diversity Aliazam Abbasfar.
May 7, 2014, Florence, Italy Retrospective Interference Alignment for the 3-user MIMO Interference Channel with.
8: MIMO II: Capacity and Multiplexing Architectures Fundamentals of Wireless Communication, Tse&Viswanath 1 8. MIMO II: Capacity and Multiplexing Architectures.
Multiple Input Multiple Output (MIMO) Communications System
Ali Al-Saihati ID# Ghassan Linjawi
EE 6331, Spring, 2009 Advanced Telecommunication Zhu Han Department of Electrical and Computer Engineering Class 18 Apr. 2 rd, 2009.
NTUEE Confidential Toward MIMO MC-CDMA Speaker : Pei-Yun Tsai Advisor : Tzi-Dar Chiueh 2004/10/25.
EEE-752 Emerging Wireless Networks MIMO Riaz Hussain FA08-PCE-003 Ph.D. Student Department of Electrical Engineering COMSATS Institute.
Iterative Multi-user Detection for STBC DS-CDMA Systems in Rayleigh Fading Channels Derrick B. Mashwama And Emmanuel O. Bejide.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Doc.: IEEE /1401r0 Submission November 2014 Slide 1 Shiwen He , Haiming Wang Quasi-Orthogonal STBC for SC-PHY in IEEE aj (45GHz) Authors/contributors:
MIMO Communications and Algorithmic Number Theory G. Matz joint work with D. Seethaler Institute of Communications and Radio-Frequency Engineering Vienna.
1 Wireless Communication and Network 2015, Baltimore, USA, September 2015 MIMO Systems and Applications Mário Marques da Silva
Doc.: IEEE /0016r0 Submission January 2004 Yang-Seok Choi et al., ViVATOSlide 1 Layered Processing for MIMO OFDM Yang-Seok Choi,
Space Time Codes. 2 Attenuation in Wireless Channels Path loss: Signals attenuate due to distance Shadowing loss : absorption of radio waves by scattering.
EE359 – Lecture 12 Outline Combining Techniques
Channel Capacity of MIMO Channels 指導教授:黃文傑 老師 指導教授:黃文傑 老師 學 生:曾凱霖 學 生:曾凱霖 學 號: M 學 號: M 無線通訊實驗室 無線通訊實驗室.
CJK-B3G #11 2 and 4 Tx MIMO System April 2006.
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
V- BLAST : Speed and Ordering Madhup Khatiwada IEEE New Zealand Wireless Workshop 2004 (M.E. Student) 2 nd September, 2004 University of Canterbury Alan.
1 WELCOME Chen. 2 Simulation of MIMO Capacity Limits Professor: Patric Ö sterg å rd Supervisor: Kalle Ruttik Communications Labortory.
Doc.: aj Submission November 2014 Slide 1 Shiwen He , Haiming Wang Quasi-Orthogonal STBC for IEEE aj ( 45GHz ) Authors/contributors:
SMARAD / Radio Laboratory 1 Overview of MIMO systems S Postgraduate Course in Radio Communications Sylvain Ranvier
Multiple Antennas.
Vertical/Horizontal MIMO
Technology training (Session 6)
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
Wireless Communication
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Space Time Codes.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Diversity Lecture 7.
Space Time Coding and Channel Estimation
MIMO II: Physical Channel Modeling, Spatial Multiplexing
Layered Processing for MIMO OFDM
HDR a solution using MIMO-OFDM
Optimal Combining of STBC and Spatial Multiplexing for MIMO-OFDM
MIMO (Multiple Input Multiple Output)
STBC in Single Carrier(SC) for IEEE aj (45GHz)
Turbo-equalization for n/ac
MIMO I: Spatial Diversity
MIMO II: Physical Channel Modeling, Spatial Multiplexing
Presentation transcript:

MIMO Simulation Tutorial 연세대학교 전기전자공학과 황규호 khhwang@yonsei.ac.kr 2011-09-02

Contents Topic 1. MIMO Receiver for Frequency Flat Channel Linear Receiver Zero-Forcing Receiver MMSE (Minimum Mean Squared Error) Receiver SIC (Successive Interference Cancellation), OSIC (Ordered SIC) Topic 2. MIMO Receiver for Frequency Selective Channel System modeling ZF, MMSE, SIC, OSIC Receivers Topic 3. Spatial Diversity Receive Diversity: MRC (Maximal Ratio Combining) Transmit Diversity: (STBC): Alamouti code Topic 4. MIMO Channel Capacity MIMO Channel Capacity Water-filling algorithm

Topic 1. MIMO Receiver for Frequency Flat Channel Linear Receiver Zero-Forcing MMSE (Minimum Mean Squared Error) SIC (Successive Interference Cancellation), OSIC (Ordered SIC)

Topic 1. MIMO Receiver for Frequency Flat Channel Frequency selective channel Frequency flat MIMO channel model TX 1 2 NT MIMO Channel Matrix H RX NR

Topic 1. MIMO Receiver for Frequency Flat Channel Linear receiver 안테나 간 간섭을 제거하고 TX signal을 추정하기 위해 RX signal vector y 에 weight matrix W를 곱하는 선형 수신 방법 ZF과 MMSE가 대표적 Zero-forcing Receiver MMSE (Minimum Mean Squared Error) Receiver

Topic 1. MIMO Receiver for Frequency Flat Channel Nonlinear receiver 대표적인 비선형 MIMO 수신 기법인 SIC와 OSIC를 실습 SIC (Successive Interference Cancellation) 1. ZF, MMSE등을 이용해 추정된 송신 신호 중 첫 번째 신호만 취함 2. detection된 신호와 channel matrix의 해당 column을 곱한 뒤 수신 신 호 벡터에서 제거 3. 이렇게 얻어진 수신 신호 벡터와 해당 column이 제거된 channel matrix를 이용해 다음 신호를 추정 4. 모든 송신 신호를 detection 할 때까지 위 과정을 반복

Topic 1. MIMO Receiver for Frequency Flat Channel OSIC ( Ordered SIC) SIC에서는 신호가 추정되는 순서를 고려치 않음 채널의 품질이 좋은 순서대로 신호를 추정한다면 더 정확한 추정 가능  Ordering 필요 대표적 방법인 MMSE-OSIC 실습 다음과 같이 매 iteration마다 각 신호의 채널 품질 지수인 SINR을 계산/비교하 여 검출 순서를 결정 Signal Interference Noise

Topic 1. MIMO Receiver for Frequency Flat Channel MIMO_1_MIMO_flat.m NT = 4, NR = 4 BPSK modulation

Topic 2. MIMO Receiver for Frequency Selective Channel System modeling ZF, MMSE, SIC, OSIC Receivers

Topic 2. MIMO Receiver for Frequency Selective Channel Frequency selective MIMO channel model 각각 링크가 L개의 path로 이뤄진 frequency selective MIMO channel k번째 time slot에서 수신 신호 벡터 { TX 1 2 NT H RX NR L paths

Topic 2. MIMO Receiver for Frequency Selective Channel k,…, k - N 번째 time slot의 수신 신호를 묶어 다음과 같이 표현 가능 where

Topic 2. MIMO Receiver for Frequency Selective Channel Receivers for frequency selective MIMO channel Frequency flat MIMO channel에서와 동일한 방법으로 수신 가능 ZF: MMSE: SIC. OSIC [Note] 위의 수신기가 동작하기 위해서는 HHH가 invertible해야 함  이를 위해서 다음의 조건을 만족해야 함 이 조건에 따라 N과 NT/NR이 결정되어야 함

Topic 2. MIMO Receiver for Frequency Selective Channel MIMO_2_MIMO_selective.m NT = 2, NR = 4 f = [0.16 0.68 0.16]  L = 3 N = 2 BPSK modulation

Topic 3. Spatial Diversity Receive Diversity: MRC (Maximal Ratio Combining) Transmit Diversity: (STBC): Alamouti code

Topic 3. Spatial Diversity Receive Diversity 수신단에서 다수의 안테나를 사용하여 diversity를 얻는 방식 아래 그림과 같은 SIMO 채널에서 사용됨 NR개의 독립적인 branch가 형성됨 각 branch 별 수신 신호에 독립적인 weight를 곱하고, 이를 모두 더한 값을 이용해 신호 추정

Topic 3. Spatial Diversity MRC (Maximal Ratio Combining) 각 안테나별 instantaneous SNR을 최대화하도록 weight를 적용하는 기법 수신 신호를 , 각 branch의 가중치 값을 라 하면, 이 때, 평균 SNR은, Cauchy-schwartz를 이용, 따라서 최대 SNR은 일 때 다음과 같이 얻어짐

Topic 3. Spatial Diversity MIMO_3_1_MRC_general.m NT = 1, NR = 2, 4 BPSK modulation

Topic 3. Spatial Diversity Transmit Diversity Receive diversity 기법과 같은 diversity order를 얻으면서 상대적 으로 낮은 수신기 복잡도와 전력 소모를 요구함 Downlink (기지국  단말기) 적용에 적합 STBC (Space-Time Block Code)가 대표적인 기술임 System modeling k번째 심볼 구간에서 j번째 수신 안테나에 수신되는 신호: yjk Space-Time Encoder Space-Time Decoder

Topic 3. Spatial Diversity Alamouti code 송신 안테나 수가 NT = 2인 경우, 사용되는 대표적인 STBC 2개의 서로 다른 신호를 2개의 time slot동안 Alamouti code에서의 송신신호 Encoding Time slot 1 Time slot 2 TX antenna 1 TX antenna 2 Information Data Modulator

Topic 3. Spatial Diversity Alamouti code에서 수신 신호 2 time slot 동안에는 채널의 변화가 없다고 가정 NR = 1인 경우 Signal combining ML 검출 Q(x): 사용된 constellation에 따른 ML slicer

Topic 3. Spatial Diversity NR = 2인 경우 Signal combining ML detection

Topic 3. Spatial Diversity Alamouti code의 등가적인 표현 NR = 2인 경우 ( 임의의 수신 안테나 수로 확장 가능) 다음과 같이 system equation을 변형할 수 있음 Signal combining & ML detection ZF equalizing으로 Alamouti code의 combining과 동일한 효과 획득 H

Topic 3. Spatial Diversity MIMO_3_2_Alamouti_general.m NT = 2, NR = 1,2 BPSK modulation

Topic 3. Spatial Diversity MRC vs. Alamouti code

Topic 4. MIMO Channel Capacity Water-filling algorithm

Topic 4. MIMO Channel Capacity TX RX H(y)는 y가 ZMCSCG일 때 최대이므로

Topic 4. MIMO Channel Capacity MIMO_4_1_Capacity_iid.m (NT , NR)= (1,1), (1,2), (2,1), (2,2), (4,4)

Topic 4. MIMO Channel Capacity Correlated MIMO channel capacity Correlated MIMO channel은 다음과 같이 표현 가능 Rr : 송신 안테나간 correlation matrix Rt : 수신 안테나간 correlation matrix Hw : iid MIMO channel matrix 따라서 Correlated MIMO channel capacity는 다음과 같다

Topic 4. MIMO Channel Capacity MIMO_4_2_Capacity_correlated.m

Topic 4. MIMO Channel Capacity No CSIT (Channel State Information at TX) case 채널 정보가 송신단에서 가용하지 않을 때 Equal gain allocation (EGA) 이 optimum r개의 독립적인 SISO 채널과 등가 (r = rank(HHH)) 각 SISO 채널의 이득 = li (li : ith singular value of HHH)

Topic 4. MIMO Channel Capacity CSIT case 채널 정보가 송신단에서 가용할 때 SVD를 통해 다음과 같이 modal decomposition 가능 채널 정보를 이용해 r개의 path에 차등적인 파워를 할당하여 성능 향상

Topic 4. MIMO Channel Capacity Water-filling (WF) algorithm Water-filling 알고리즘: 전체 channel capacity 합을 최대화하는 알고리즘 Procedure of WF algorithm 1. Set iteration count p = 1. Calculate constant m as follows: 2. With m above, power allocation factor gi of ith path can be calculated using 3. If minimum of is negative, discard the path by , and return to step 1 with p = p+1. 4. Else if, end of procedure.

Topic 4. MIMO Channel Capacity MIMO_4_3_Waterfilling.m NT = 4, NR = 4 Water-filling algorithm vs. Equal power algorithm

Topic 5. Interference Alignment

Topic 5. Interference Alignment K user SISO interference channel Interference alignment with 2n+1 symbol extension ZF reception scheme

Topic 5. Interference Alignment Extended channel between TX j and RX k Received signal at RX k TX 1: RX 1: TX 2: RX 2: TX 3: RX 3:

Topic 5. Interference Alignment Problem Restatement Let Then with given diagonal T, find A, B and C that satisfy In this context beamforming vector at TX k 𝐕 𝑘 is established as follows:

Topic 5. Interference Alignment Example K = 3 users , n = 3  2n+1 = 7 symbol extension @ RX 1 TX 1 RX 1 TX 2 Find zero-forcing matrix U[1] (4 x 7) such that TX 3 4 x 4 4 x 3 4 x 3

Topic 5. Interference Alignment @ RX 2 TX 1 RX 2 TX 2 Find zero-forcing matrix U[2] (3 x 7) such that 3 x 4 3 x 3 TX 3

Topic 5. Interference Alignment @ RX 3 Find zero-forcing matrix U[2] (3 x 7) such that 3 x 4 3 x 3 TX 1 TX 2 TX 3 RX 3

Topic 5. Interference Alignment MIMO_5_IA_SISO.m K = 3 users IFC 2n+1 symbol extension, n = 1, 3, 5 Capacity of IA compared to Reference: 1-user SISO channel Slope at high SNR Reference: 1 IA n=1: 1.3336 이론값: 4/3 = 1.3333 n=2: 1.4299 이론값: 10/7 = 1.4286 n=3: 1.4540 이론값: 16/11 = 1.4545  n이 증가함에 따라 bound 값 3/2 = 1.5로 근접