Www.projectmathsbooks.com Comparing, Shifting & Scaling Graphs.

Slides:



Advertisements
Similar presentations
Maximum and Minimum Values
Advertisements

Graphs of the Sine and Cosine Functions
Shifting & Scaling Quiz. Activity 2 35 GraphFunction Local Maximum/Minimum
EXAMPLE 4 Graph a translated square root function Graph y = –2 x – Then state the domain and range. SOLUTION STEP 1 Sketch the graph of y = –2 x.
Unit 11 – Derivative Graphs Section 11.1 – First Derivative Graphs First Derivative Slope of the Tangent Line.
Completing the square Solving quadratic equations 1. Express the followings in completed square form and hence solve the equations x 2 + 4x – 12 = 0 (x.
Graph Transformations (I)f(x), f(x) +/- k, f(x +/- k)See Handout Example The following graph shows y = g(x). Make sketches of (a) y = g(x) + 3 (b) y =
1 Example 1 Sketch the graph of the function f(x) = x 3 -3x 2 -45x+47. Solution I. Intercepts The x-intercepts are the solutions to 0= f(x) = x 3 -3x 2.
Graphing Cosecant and Secant. Using the Graphing Calculator Mode— Radians Function Sequential Window— –X min = -  –X max = 3  –X scale =  /6 Window—
Analyzing the Graphs of Functions Objective: To use graphs to make statements about functions.
B1.6 – Derivatives of Inverse Trig Functions
Feb 11, 2011 The transformed trigonometric functions.
Quiz review Direction of Opening Y – intercept Vertex AOS
6.4.2 – Graphing Transformed Trig Functions. Based on the previous 2 days, you should now be familiar with: – Sin, Cos, Tan graphs – 3 different shifts:
2.7 Graphing Absolute Value Functions The absolute value function always makes a ‘V’ shape graph.
Increasing/ Decreasing
A Model Solution and More. Sketch the graph of y = Y- intercepts: For y-intercepts, set x = 0 X- intercepts: For X-intercepts, set y = 0 The x-intercept.
Graphs with restricted(forbidden) regions!. From this information, we can complete the sketch Note that the graph is symmetrical about the y-axis, so.
5.1 Composite Functions Goals 1.Form f(g(x)) = (f  g) (x) 2.Show that 2 Composites are Equal.
Trigonometric Graphs.
Last Night’s HW  6. no  8. yes  32a. 2  32b. 5  32c. √x+2  33a. -1/9  33b. undefined  33c. 1/(y^2 + 6y) 66. D: (- ∞, 0) U (0, 2) U (2, ∞) 68. D:
Sign Studies. Why do we use sign studies? Example 1. Determine the equation of f(x) by identifying the x-intercepts (roots, solutions, zeros, factors)
Do Now:. 4.5 and 4.6: Graphing Trig Functions Function table: When you first started graphing linear functions you may recall having used the following.
Chapter 7 Day 3 Book Section 7.5 Get 2 grids for the 2 shift problems!
17 A – Cubic Polynomials 3: Graphing Cubics from General Form.
4.1 – 4.3 Review. Sketch a graph of the quadratic. y = -(x + 3) Find: Vertex (-3, 5) Axis of symmetry x = -3 y - intercept (0, -4) x - intercepts.
Exercise 7K Page 139 Questions 4, 5, 7, 12 & 13. Exercise 7K Page 139 Q4 (a) Factorise f(x) = x 3 + x 2 – 16x – – 16 – 16 Try ± 1, ± 2, ±
1.3 Graphs of Functions Equations are mathematical ___________________________. ______________________ are what make the sentences true. A ________________.
Matching Functions with their Derivatives
SECT 3-8B RELATING GRAPHS Handout: Relating Graphs.
Functions LINEAR AND NON LINEAR. Linear function What is the function that states that the range values are 2 more than the domain values?  f(x) = x.
5.3 Part 1 Trig Graphs A function is periodic if its values repeat in a cycle. Sin and Cos functions repeat their values in a regular fashion. Since.
Unit 2 Review. What does the graph tell you???? What is the Domain What is the range What is the y intercept What are the relative max and mins, absolute.
SWBAT… solve quadratic equations Mon, 5/23
I CAN identify the vertex and axis of symmetry of quadratic functions written in vertex form. lesson 9.5.
Science Planner 12/7/16 WALT: understand and graph Sunspot cycles.
4.3a Increasing and Decreasing Functions And the First Derivative Test
Do-Now What is the general form of an absolute value function?
Solving System of Linear Equations
Graphing Sine & Cosine Objectives:
functions graphically
Sketching the Derivative
Algebra 2: Unit 3 - Vertex Form
3.6 Summary of Curve Sketching *pass out chart!
Graphs of Trigonometric Functions
-20 is an absolute minimum 6 is an absolute minimum
For each table, decide if y’is positive or negative and if y’’ is positive or negative
Graph of the derived function
State the period, phase shift, and vertical shift
Problem Solving 4.
Analyzing the Graphs of Functions
2.7 Graphing Absolute Value Functions
7.2 Graphing Polynomial Functions
58 – First Derivative Graphs Calculator Required
sin x cos x tan x 360o 90o 180o 270o 360o 360o 180o 90o C A S T 0o
For each table, decide if y’is positive or negative and if y’’ is positive or negative
(4)² 16 3(5) – 2 = 13 3(4) – (1)² 12 – ● (3) – 2 9 – 2 = 7
Piecewise-Defined Function
2.7 Graphing Absolute Value Functions
4.9 Notes – Graph and Solve Quadratic Inequalities
Jigsaw Review: 4.1 to 4.3 Friday, Nov. 20, 2009
I can graph a function with a table
The End Min of 9 slides Max of 15 slides You will have 1 minute to explain supply and demand. This project is worth 50 summative points. 10pts -2 graphs.
The First Derivative Test. Using first derivative
Where do these graphs intersect
How many solutions does the equations have?
4.4 Concavity and the Second Derivative Test
LINEAR & QUADRATIC GRAPHS
Sec 4.3: HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH
Line Graphs.
Presentation transcript:

Comparing, Shifting & Scaling Graphs

Shifting and Scaling functions

(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -318(-3,18) -28(-2,8) 2(-1,2) 00(0,0) 12(1,2) 28(2,8) 318(3,18) -327(-3,27) -212(-2,12) 3(-1,3) 00(0,0) 13(1,3) 212(2,12) 327(3,27) -34.5(-3,4.5) -22(-2,2) 0.5(-1,0.5) 00(0,0) 10.5(1,0.5) 22(2,2) 34.5(3,4.5) -39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9)

(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -3-9(-3,-9) -2-4(-2,-4) (-1,-1) 00(0,0) 1(1,-1) 2-4(2,-4) 3-9(3,-9) -3-27(-3,-27) -2-12(-2,-12) -3(-1,-3) 00(0,0) 1-3(1,-3) 2-12(2,-12) 3-27(3,-27) (-3,-4.5) -2 (-2,-2) -0.5(-1,-0.5) 00(0,0) 1-0.5(1,-0.5) 2-2(2,-2) 3-4.5(3,-4.5) -39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9)

(-3,12) -27(-2,7) 4(-1,4) 03(0,3) 14(1,4) 27(2,7) 312(3,12) -35(-3,5) -20(-2,0) -3(-1,-3) 0-4(0,-4) 1-3(1,-3) 20(2,0) 35(3,5) -39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -310(-3,10) -25(-2,5) 2(-1,2) 01(0,1) 12(1,2) 25(2,5) 310(3,10) -39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9)

(-3,-6) -2(-2,-1) 2(-1,2) 03(0,3) 12(1,2) 2(2,-1) 3-6(3,-6) -3-13(-3,-13) -2-8(-2,-8) --5(-1,-5) 0-4(0,-4) 1-5(1,-5) 2-8(2,-8) 3-13(3,-13) -39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -3-8(-3,-8) -2-3(-2,-3) 0(-1,0) 01(0,1) 10(1,0) 2-3(2,-3) 3-8(3,-8) -39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9)

-39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) (-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -49(-4,9) -34(-3,4) -21(-2,1) 0(-1.0) 01(0,1) 14(1,4) 29(2,9) (-6,9) -51(-5,4) -44(-4,1) -39(-3,0) -216(-2,1) 25(-1,4) 036(0,9) (-3,6.25) (-2,2.25) 0.25(-1,0.25) 00.25(0,0.25) 12.25(1,2.25) 26.25(2,6.25) (3,12.25) 33

-39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) (-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -29(-3,9) 4(-2,4) 01(-1,1) 10(0,0) 21(1,1) 34(2,4) 49(3,9) (0,9) 14(1,4) 21(2,1) 30(3,0) 41(4,1) 54(5,4) 69(6,9) (-3,12.25) (-2,6.25) 2.25(-1,2.25) 00.25(0,0.25) 10.25(1,0.25) 22.25(2,2.25) 36.25(3,6.25) 33

-39(-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) (-3,9) -24(-2,4) 1(-1,1) 00(0,0) 11(1,1) 24(2,4) 39(3,9) -49(-4,9) -34(-3,4) -21(-2,1) 0(-1,0) 01(0,1) 14(1,4) 29(2,9) (-4,11) -36(-3,6) -23(-2,3) 2(-1,2) 03(0,3) 16(1,6) 211(2,11) (-4,11) -36(-3,6) -23(-2,3) 2(-1,2) 03(0,3) 16(1,6) 211(2,11) -47(-4,7) -32(-3,2) -2(-2,-1) -2(-1,-2) 0(0,-1) 12(1,2) 27(2,7)

GraphFunction Local Maximum/Minimum Activity 2 GraphFunction Local Maximum/Minimum 1 Local min (0,0) 2 3 Local max(0,0) 4 Local min (0,3) 5 Local min (0,-1) 6 Local max (0,-1) 7 Local max (0,3) 8 Local min (-1,0) 9 Local min (3,0) 10 Local min (-1,2) 35

GraphFunction Local Maximum/Minimum Activity 2 GraphFunction Local Maximum/Minimum 1 11Local min (0,1) 12Local min (0,0) 13Local min (2,0) 14Local max (0,0) 15Local max (0,-1) 16Local min (-3,-2) 17Local min (2,3)

GraphFunction Local Maximum/Minimum Activity 2 GraphFunction Local Maximum/Minimum 1 11Local min (0,1) 12Local min (0,0) 13Local min (2,0) 14Local max (0,0) 15Local max (0,2) 16Local min (-3,-2) 17Local min (2,3) 18Local max (0,-1) 19Local max (1,2) 20Local max (-3,4) 35

GraphFunction Local Maximum/Minimum GraphFunction Local Maximum/Minimum f(x) =sin(x)+5 Activity 2 35

Which is the best format? Can we change from one format to the other and back again? Activity 3 36

Activity (-2,7) 0(-1,0) 0-5(-1,5) 1-8(1,-8) 2-9(2,9) 3-8(3,-8) 4-5(4,-5) 50(5,0) 67(6,7) -27(-2,7) 0(-1,0) 0-5(-1,5) 1-8(1,-8) 2-9(2,9) 3-8(3,-8) 4-5(4,-5) 50(5,0) 67(6,7) -27(-2,7) 0(-1,0) 0-5(-1,5) 1-8(1,-8) 2-9(2,9) 3-8(3,-8) 4-5(4,-5) 50(5,0) 67(6,7) 4. What items of information from each of the functions can help us if sketching the graph of a function? 36

Activity 4 Graph Matching

FSCSTPIRG Local max at (4,4) Local min at (5,-1) Local min at (-3,-1) Local min at (1,-9) Local min at (3,0) Local max at (1,4) Graph Matching Activity 4 Solutions FSCSTPIRG F4S6V2TP1Y4R3G6 F6S4V1TP2Y6R4G5 F2S2V5TP4Y2R6G4 F5S5V3TP3Y3R2G1 F1S3V6TP6Y1R5G2 F3S1V4TP1Y5R1G3

FSCSTPIRG Local min at (1,-9) Local min at (3,0) Local max at (1,4) Local min at (-3,-1) Local min at (5,-1) Local max at (4,4) Graph Matching Activity 4 Solutions FSCSTPIRG F5S5V3TP3Y3R2G1 F1S3V6TP6Y1R5G2 F3S1V4TP1Y5R1G3 F2S2V5TP4Y2R6G4 F6S4V1TP2Y6R4G5 F4S6V2TP1Y4R3G6