Status of the rt CH-cavity - Anja Seibel -. Outline CH-Cavity CH-Parameter Heat distribution Cooling concept Final CH-Cavity First measurement results.

Slides:



Advertisements
Similar presentations
Institut für Angewandte Physik LINAC AG H. Podlech 1 MYRRHA Injector Design and Related R&D 2 nd Open Collaboration Meeting on Superconducting Linacs for.
Advertisements

RFQ development for high power beams
RFQ Structural Mods Scott Lawrie. Vacuum Pump Flange Vacuum Flange Coolant Manifold Cooling Pockets Milled Into Vanes Potentially Bolted Together Tuner.
MICE RF and Coupling Coil Module Outstanding Issues Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 26, 2004.
Laboratori Nazionali di Legnaro (Italy) DTL design status A. Pisent.
Muon Front End Buncher, Phase Rotation, Cooling Schematics & CAD model based on MICE Cavities Alan Grant Daresbury (April 10, 2012)
Progress of the sub-harmonic bunching system (i.e. upgrading progress of BEPCII present bunching system) Pei Shilun for the SHBS team Accelerator center,
MICE RF Cavity Design and Fabrication Update Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 27, 2004.
Plans for 201-MHz Cavities Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory November 18, 2010.
MICE RF Cavity Measurements Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory March 26, 2010 University of California, Riverside,
Status of the 201 MHz Cavity and Coupling Coil Module Steve Virostek Lawrence Berkeley National Laboratory MICE Video Conference March 10, 2004.
201 MHz NC RF Cavity R&D Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory WG3 at NuFact 2004 July 28, 2004.
Cell-Coupled Drift Tube Linac M. Pasini, CERN AB-RF LINAC4 Machine Advisory Committee 1 st meeting CERN January 29-30, 2008.
RF Cavity of CIS Xiaoying Pang Mar. 12 th, 2007 IUCF.
Vacuum system in the main Linacs C. Garion CERN/TE/VSC CLIC09 workshop, October.
201 MHz and 805 MHz Cavity Developments in MUCOOL Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory Nufact 2002 Workshop, London,
Rossana Bonomi, Alberto Degiovanni, Marco Garlasché, Silvia Verdú Andrés 5.7 GHz high gradient test cavity
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
RFQ Thermal Analysis Scott Lawrie. Vacuum Pump Flange Vacuum Flange Coolant Manifold Cooling Pockets Milled Into Vanes Potentially Bolted Together Tuner.
Zenghai Li SLAC National Accelerator Laboratory LHC-CC13 CERN, December 9-11, 2013 HOM Coupler Optimization & RF Modeling.
2.1GHz cavity without cell-to-cell coupling slots – 1.875” beam pipe Binping Xiao Aug
704MHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL July 8, 2015 LEReC Warm Cavity Review Meeting  July 8, 2015.
201 MHz Cavity Fabrication Update Derun Li Lawrence Berkeley National Lab MICE CM24 at RAL, UK June 1, 2009.
KEK R&D for LHC Plan of 800MHz Cavity Calculation of 400MHz Cavity 16 th September 2009, LHC-CC09 at CERN K.Nakanishi.
ISTC Project #3888 Development, manufacture and experimental investigation of a unique pilot CCDTL accelerating section in the energy range of MeV.
Rossana Bonomi ESS Cryomodule Status Meeting, 9/1/2013.
Development of the Room Temperature CH-DTL in the frame of the HIPPI-CARE Project Gianluigi Clemente,
1.3GHz Input Coupler for ILC
Ding Sun and David Wildman Fermilab Accelerator Advisory Committee
2.1 GHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL June 15, 2015 LEReC Warm Cavity Review Meeting  June 15, 2015.
RF scheme of electron linear accelerator with energy MeV Levichev A.E. Budker Institute of Nuclear Physics SB RAS.
1 HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION KEKB Review Committee/ NAKAI Hirotaka KEK Crab Cavity - Cryogenics - KEKB Crab Cavity Group - presented.
56 MHz SRF Cavity Thermal Analysis and Vacuum Chamber Strength C. Pai
2 nd harmonic RF perpendicular biased cavity update C.Y. Tan, W. Pellico, G. Romanov, R. Madrak, and D. Wildman 02 Apr 2014.
1 Al Moretti, APC, Fermilab MAP- Winter Meeting February 28 - March 4, 2011 TJNAF Newport News, VA.
UK Neutrino Factory Meeting Front End Test Stand (F.E.T.S.) Engineering Status by P. Savage 22nd April 2009.
MICE RF Cavity Measurements Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory July 8, 2010 Rutherford Appleton Laboratory, UK.
Xx-xx-2010, tanks arrive from Snezhinsk to Novosibirsk A.Tribendis, July 19-21, 2010, Snezhinsk 1. Check cavity dimensions on a CMM 2. Assemble and measure.
 =1 cavity: parameters Dimensions for cavity fabrication before any chemical polishing and at room Temp. outer ½ cell pick-up side inner ½ cells outer.
MAIN LINAC CRYOMODULE DESIGN REVIEW INPUT COUPLER September 5, 2012V. Veshcherevich.
BINP geometry (= cavity inner dimensions which define the boundary) is based on CERN geometry (as of August 4, 2008) with some adjustments made in order.
Status of work on the HOM coupler. 2 nd Harmonic cavity Meeting 11/II-2016 Thermal analyses with shims (Y.Terechkine). Gennady Romanov On behalf of Y.Terechkine.
Institut für Angewandte Physik LINAC AG H. Podlech 1 Injector Development for MYRRHA 3 nd Open Collaboration Meeting on Superconducting Linacs for High.
THE MAFF IH-RFQ TEST STAND AT THE IAP FRANKFURT A. Bechtold, J. Fischbach, D. Habs, O. Kester, M. Pasini, U. Ratzinger, J. Rehberg, M. Reichwein, A. Schempp,
Update on the TDI impedance simulations and RF heating for HL- LHC beams Alexej Grudiev on behalf of the impedance team TDI re-design meeting 30/10/2012.
RF PROCESSING OF RFQ COUPLERS CDR2 | Michel Desmons 8-9 DEC 2015.
DTL prototype summary and production sequence F.Grespan LNL _06_22 CDR.
ESS DTL: Prototyping M.Comunian - F. Grespan – P. Mereu Lund– 10/04/2013F.Grespan.
DTL RF properties F.Grespan LNL _06_22 CDRF. Grespan.
IOTA RF SYSTEM Kermit Carlson 13 Nov 14. RF System Specifications 1 kV RF gap potential 30 MHz CW for electron run – Provide acceleration potential 30.
PXIE RFQ Engineering Design Steve Virostek Engineering Division Lawrence Berkeley National Laboratory April 10, 2012 Project X Collaboration
Engineering of the power prototype of the ESRF HOM damped cavity* V. Serrière, J. Jacob, A. Triantafyllou, A.K. Bandyopadhyay, L. Goirand, B. Ogier * This.
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
704 MHz cavity design based on 704MHZ_v7.stp C. Pai
Designing a Continuous-Wave RF Cavity for Bunch Rotation in Support of Experiments Mu2e and g-2 Aaron Smith under the mentorship of Joseph Dey Accelerator.
Advancements on RF systems D. Alesini (LNF-INFN) Quinto Meeting Generale Collaborazione LI2FE, Frascati 15-16/03/2011.
325 MHz Superconducting Spoke Cavity Coupler status. T. Khabiboulline Power Coupler design for Superconducting Spoke cavities. Originally.
704 MHz cavity folded tuner Thermal Analysis C. Pai
O.I.Brovko, A.V.Eliseev, I.N.Meshkov, E.M.Syresin (JINR)
SC Activities at IAP Frankfurt
Rf-Cavity Design of the new FAIR post-Stripper Linac
High efficiency work and MBK development for accelerators
Bunching system for SPES project
Overview of the RFCC Module and 201-MHz Cavity Design
Odu/slac rf-dipole prototype
LINAC AG • IAP • Goethe Universität Frankfurt
Physics design on Injector-1 RFQ
HIE-LINAC status report
CEPC Input Coupler Discuss 6th IHEP-KEK SCRF Collaboration Meeting
CEPC-650MHz Cavity Cryomodule
Presentation transcript:

Status of the rt CH-cavity - Anja Seibel -

Outline CH-Cavity CH-Parameter Heat distribution Cooling concept Final CH-Cavity First measurement results Anja Seibel2

CH-Cavity Anja Seibel3

the CH-Cavity consists of 5 gaps with an operating frequency of 175 MHz the cavity has a diameter of about 770 mm (665,4 mm Tank inner diameter) and a length of 463 mm (383 mm Tank inner length) CH-Cavity Anja Seibel4 21 mm 30 mm34 mm 24 mm 463 mm 770 mm

Anja Seibel5 1 Inductive input coupler 4 Pick ups 2 Tuners 1 Vacuum pump port CH-Cavity

Anja Seibel6 The tuning is done by two cylindrical tuners. One is adjustable in height (80 mm) and one is static

Anja Seibel7 CH-Cavity 220 mm Dyn. Tuner [mm] Frequency [MHz]

CH- Parameter Anja Seibel8 ParameterUnitValue Gaps5 FrequencyMHz175 Tank lengthmm383 Tank diametermm665.4 Aperture diametermm24 Effective VoltagekV325 Q-Factor14000 Shunt impedanceM Ω /m80 LosseskW5

Heat distribution Anja Seibel9 rf current density distributiontemperature distribution

Cooling concept Anja Seibel10 Cooling concept for the drift tubes and the stems

Anja Seibel11 Cooling concept

Anja Seibel12 Cooling concept Cooling concept for the tank: 16 cooling channels with a diameter of 10 mm

Final CH-cavity Anja Seibel13

Final CH-cavity Anja Seibel14

Final CH-cavity Anja Seibel15

Final CH-cavity Anja Seibel16

First measurement results Anja Seibel17 Dyn. Tuner [mm] Frequency [MHz] Dyn. Tuner [mm] Frequency [MHz] Measurement Simulation

Electrical field profile Anja Seibel18 First measurement results SimulationMeasurement

Anja Seibel19 Thanks for your attention!