Chapter 17 Mechanical Waves & Sound. Waves A repeating disturbance or movement that transfers energy through matter or space. A wave will travel as long.

Slides:



Advertisements
Similar presentations
Mechanical Waves and Sound
Advertisements

Chapter 14 Waves.
Module 7 Waves/Sound.
Unit 7 Waves Chapter 11 Pages
Chapter 17 Mechanical Waves and Sound
Waves What are waves?.
Characteristics of Waves
Waves By: S Unit 5 Mechanical waves are disturbances in matter which need a medium to travel through. These waves also carry energy from place to place.
7 th Grade – Chapter #8. What are waves? Wave- a disturbance that transfers energy from place to place. Energy- is defined as the ability to do work.
How does one differentiate between transverse and longitudinal waves?
An Understanding of Sound and Waves Copyright PEER.tamu.edu.
Waves/Sound. The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space.
Waves Chapters 11, 12, 13. CH 11-1 The Nature of Waves  wave: repeating disturbance or movement that transfers energy through matter or space  Figure.
Mechanical Waves and Sound Ch. 17 Physical Science.
Mechanical Waves & Sound
Chapter 17: Mechanical Waves and Sound
Chapter 17 & 18 Waves.
Ch. 20 Wave Notes Cool Wave Effect Cool Wave Effect.
Waves and Sound. Mechanical Waves Waves are created by an energy source making a vibration that moves through a medium. Mechanical waves are disturbances.
Waves. What are waves? Wave: a disturbance that transfers energy from place to place. (Energy from a wave of water can lift a boat.) Medium: –the state.
What causes mechanical waves?
Go to section Interest Grabber Vibrations A wave is a vibration that carries energy from one place to another. But not all vibrations are waves. Hold a.
Waves A repeating movement or disturbance that transfers energy...
Mechanical Waves and Sound
Mechanical Waves and Sound
Characteristics of Waves
WAVE Basics Chapters 15.
Waves Waves as energy Types of waves What exactly is a wave? Definition: A wave is any disturbance that transmits energy through matter or space Waves.
A SOUND TOPIC. The Physics of Sound Sound travels in longitudinal waves.
WAVES. The Nature of Waves A. Wave - a repeating disturbance or movement that transfers energy through matter or space. 1. Molecules pass energy on to.
Waves Chapter 10. The Nature of Waves wave: repeating disturbance or movement that transfers energy through matter or space -examples: light, ocean, sound,
The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space Waves transfer energy.
Mechanical Waves and Sound
Waves Waves as energy Waves as energy Types of waves Types of waves Parts of a wave Parts of a wave Movement of waves Movement of waves Properties of.
Chapter 10 Section 1 The Nature of Waves
Chapter 9: Introduction to Waves
Waves & Sound I. Characteristics of Waves  Waves  Transverse waves  Longitudinal waves  Measuring waves.
Chapter 17. A. WHAT ARE MECHANICAL WAVES? 1. What is a Mechanical Wave? It is a disturbance in matter that carries energy from one place to another. 2.
M ECHANICAL W AVES Ch TrueFalseStatementTrueFalse There are 2 types of mechanical waves- transverse and longitudinal Transverse waves have compressions.
Waves What are waves?????.
 Mechanical wave- a disturbance in matter that carries energy from one place to another  Require a medium to travel through ◦ A medium can be a.
Light and Sound energy. Wave Definition A wave – is something that carries energy though matter or space. Waves transfer energy Energy spreads out as.
Coffaro 4/20081 Key Terms Wave- traveling disturbance of energy Longitudinal Wave- compression wave; molecules in medium are pushed back and forth parallel.
Chapter 17 Mechanical Waves Mechanical Waves.
Chapter 20 Sections 1- 3 What are waves?. Wave Definition: A disturbance that transfers energy from place to place. What carries waves? A medium, a medium.
What are waves?. I. Waves A. Definition: A disturbance that transfers energy from place to place. 1. What carries waves? A medium, a medium is the material.
Wave Definition: A disturbance that transfers energy from place to place. A medium, a medium is the material through which a wave travels. A medium can.
Characteristics of waves.. The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space.
~ Sound ~ The Nature of Sound  Speed of Sound  Human hearing  Doppler effect  “Seeing” with sound.
What are Waves?. The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space. There.
Pearson Prentice Hall Physical Science: Concepts in Action
Mechanical Waves and Sound
Waves What are waves?.
Pearson Prentice Hall Physical Science: Concepts in Action
Waves What are waves?.
Chapter 17 Waves.
The Energy of Waves.
WAVES.
Chapter 17: Mechanical Waves & Sound
Waves & Sound I. Characteristics of Waves Waves Transverse waves
Behavior of Waves 17.3.
Mechanical Waves and Sound
Waves What are waves?.
Waves What are waves?.
Waves What are waves?.
Waves.
Waves & Sound Unit 6.
Waves Wave Properties Wave Interactions Sound Waves
Waves What are waves? Ms. P. IA.
Waves What are waves?.
Presentation transcript:

Chapter 17 Mechanical Waves & Sound

Waves A repeating disturbance or movement that transfers energy through matter or space. A wave will travel as long as it has energy.

Mechanical Waves Mechanical Wave: is a disturbance in matter that carries energy from one place to another. Mechanical waves require matter to travel Medium: is a material (matter) that mechanical waves travel through solid liquid or gas. Ex. Air, water, aluminum, copper, The speed of mechanical waves changes with different mediums

Mechanical wave is created when a source of energy causes a vibration to travel through a medium Vibration: a repeating motion that follows a pattern Sound is created by vibrations Vocal cords

There are 3 types of mechanical waves Transverse waves Longitudinal waves/ Compressional Surface waves Longitudinal Transverse

Transverse waves: is a wave that causes the medium to vibrate at right angles (perpendicular) to the direction in which the wave travels Up & Down, or Side to Side motion Draw a picture of a transverse wave Ex. Water Rope Slinky Electromagnetic (radio waves, infrared, etc)

B. Transverse Waves Transverse Waves medium moves perpendicular to the direction of wave motion

Crest: is the highest point above the resting position (top of the wave) Trough: is the lowest point below the resting position (bottom of the wave) Resting position: is the flat position of a wave before it starts moving Slinky demo

B. Transverse Waves Wave Anatomy crests troughs wavelength amplitude corresponds to the amount of energy carried by the wave nodes

Longitudinal waves: is a wave in which the vibration of the medium travels parallel to the direction of the wave\ Slinky demo Compression: a part of a longitudinal wave where the particles are pushed closely together Rarefaction: a part of a longitudinal wave where the particles are spaced farther apart

C. Longitudinal Waves Longitudinal Waves (a.k.a. compressional) medium moves in the same direction as wave motion movie

C. Longitudinal Waves Wave Anatomy rarefaction compression wavelength Amount of compression corresponds to amount of energy  AMPLITUDE.

Draw a longitudinal wave Ex. of longitudinal waves Sound

Surface wave: is a wave that has characteristics of both transverse and longitudinal waves Up & down movement like a transverse Parallel movement of energy like longitudinal Ex. Ocean Waves Earthquakes (waves through Earth’s surface)

Properties of Waves Periodic Motion: is motion that follows a repeating pattern Period: the time period for one interval of movement Frequency: is the number of complete cycles that pass a point in a given amount of time Frequency of waves are measured in hertz (Hz)

 types of waves video types of waves video

Wavelength: is the distance of a complete cycle (either crest to crest or trough to trough) Long wavelength = low frequency Short wavelength = high frequency

D. Measuring Waves Frequency ( f ) # of waves passing a point in 1 second Hertz (Hz)  shorter wavelength = higher frequency = higher energy 1 second

D. Measuring Waves Velocity ( v ) speed of a wave as it moves forward depends on wave type and medium v = wave λ × f V:velocity (m/s) λ:wavelength (m) ƒ: frequency (Hz)

ν λ ƒ ÷ ×

WORK: v = λ × f v = (3.2 m)(0.60 Hz) v = 1.92 m/s D. Measuring Waves EX: Find the velocity of a wave in a wave pool if its wavelength is 3.2 m and its frequency is 0.60 Hz. GIVEN: v = ? λ= 3.2 m f = 0.60 Hz λ v f

WORK: f = v ÷ λ f = (5000 m/s) ÷ (417 m) f = 12 Hz D. Measuring Waves EX: An earthquake produces a wave that has a wavelength of 417 m and travels at 5000 m/s. What is its frequency? GIVEN: λ = 417 m v = 5000 m/s f = ? λ v f

Wave Speed = wavelength X frequency Wave speed changes in different mediums If waves are traveling the same speed, then wavelength and frequency are INDIRECTLY related

Amplitude: is the distance from the resting position to either a crest or trough Energy and amplitude are DIRECTLY related High energy = high amplitude Low energy = low amplitude Amplitude in sound is called volume

Light waves travel faster than sound Sound waves travel faster in liquids and solids than gas Light waves travel faster in gases and vacuums than in liquids an solids.

Behavior of Waves Reflection: is when a wave bounces off a surface it can not pass through Reflection does not change the speed or frequency (the wave can be flipped upside down or side to side) Ex. Mirror Law of Reflection: the angle of incidence (incoming wave) = the angle of reflection (outgoing wave) All waves can be reflected The reflection of sound is called an echo

reflection

Reflection terms normal

Refraction: is the bending of a wave as it enters a new medium Ex. light waves Ruler in a beaker of water Ex. sound waves Listening to sound underwater

Diffraction: is the bending of a wave as is moves around an obstacle or passes through a narrow opening Page 510 Eddy: is an area behind a mid-stream boulder where the water flows in a reverse direction (provides safety for rafters) Chute: is an area of a river where the water is constricted to a narrow passage

diffraction

Constructive Interference: is when 2 or more waves combine to form a wave with a larger displacement (amplitude)

Destructive interference: is when 2 or more waves combine to form a wave with a smaller displacement (amplitude) add together

Standing wave: is wave or waves that appear to stay in the same place Plucking a guitar string Waves in a river Node: is the point on a standing wave where there is no displacement (amplitude) Antinodes: are the crests and the troughs on a standing wave

17.4 Sound Waves Sound waves are longitudinal waves The speed of sound changes due to different types of mediums Chart p 514 Speed: is the distance traveled in a certain amount of time Meters/second: m/s

Sound Waves Echolocation and Dolphin discovery

Intensity: depends on the amplitude (volume) and the distance from the source Decibels: (dB) is the unit for sound intensity Chart on 515 Damage to ears around 120 dB

Frequency: is the number of wave cycles to pass a given point in one second Measured in hertz (Hz) Pitch: is the perceived frequency of sound Different notes in music All the different notes have a unique frequency

Ultrasound: use sound to locate objects or create pictures SONAR, fish finders, radar Animals use “echo-location” Bats, dolphins, whales Pregnant ladies get ultra sounds to check the baby’s health

Doppler Effect: pitch changes due to the object creating the sound moving closer or farther away Pic on 516

B. Human Hearing sound wave vibrates ear drum amplified by bones converted to nerve impulses in cochlea

Human Ear Picture on 517 Outer ear: the collect and funnel the sound waves into the middle ear Middle ear: amplifies the vibrations Inner ear: are where nerve endings receive and send the signal to the brain The brain interprets those signals as sound

Resonance: waves of the same frequency combine (constructive interference) amplifies the sound Resonance can also cause things to vibrate Every object has a natural frequency, if a sound wave with the same frequency hits it, it will cause the object to vibrate

B. Resonance Resonance special case of forced vibration object is induced to vibrate at its natural frequency

B. Resonance “Galloping Gertie” The Tacoma Narrows Bridge Disaster Wind through a narrow waterway caused the bridge to vibrate until it reached its natural frequency.

C. Harmonics Fundamental the lowest natural frequency of an object Overtones multiples of the fundamental frequency

Galloping Gertie V4&feature=relatedhttp:// atch?v=lXyG68_caV4&feature=relatedhttp:// atch?v=lXyG68_caV4&feature=related

Seismic waves Seismic waves are the waves of energy caused by the sudden breaking of rock within the earth or an explosion. They are the energy that travels through the earth and is recorded on seismographs. Compression and Transversal