Do Now: 1. Name how the two triangles are congruent in the rectangle below: 2. Find the measure of an exterior angle in a pentagon: Homework: Packet page 3 #5 & 6 AB C D
Given:Rectangle ABCD Given:Rectangle ABCD E is the midpoint of DC Prove:Angle 1Angle 2 Prove:Angle 1Angle 2 D E C BA 12
StatementReason 1.Rectangle ABCD1. Given 2.ADBC2. 3. Angle ADE and Angle BCE3. are congruent right angles SAS 7.Angle 1Angle 27. Opposite sides of a rectangle are congruent E is the midpoint of DC A rectangle has 4 congruent right angles ADEBCD CPCTC DEEC A midpoint cuts a line in ½ A midpoint cuts a line in ½ Given
Given: Isosceles Trapezoid ABCD Prove: ADB DBC A B CD
Statement Reason 1. Isosceles Trapezoid ABCD1. Given 2. AD BC2. The legs of a Isosceles Trapezoid are 3. AB is parallel to DC3. A trapezoid has parallel bases 4. Angle ABD Angle BDC4. When lines are parallel, alternate interior angles are 5. BD BD5. Reflexive Property 6. ABD BDC6. SAS
Given: Rectangle ABCD DF CE Prove: a) ADE BCF b) Angle 1 Angle 2 c) GF GE AB CD EF 12 G
Given: Quadrilateral ABCD, diagonal AFEC, AE FC, BF is perpendicular to AC, DE is perpendicular to AC, Angle 1 Angle 2 Prove: ABCD is a parallelogram BC DA F E
True or False: The bases of a parallelogram are congruent? True or False: The bases of a parallelogram are congruent? Name the missing step in the proof: Name the missing step in the proof: StatementReason 1. ABCD1. Given 2. EFEF2. Reflexive Addition Axiom