Chapter 7 Trigonometry
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Right-angled Triangles Adjacent side The side AB opposite to right angle (i.e. the longest side) is called hypotenuse. Opposite side When BAC, one of the acute angles, is marked as , BC is called the opposite side of , and AC is called the adjacent side of . Hypotenuse
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Hypotenuse sin Opposite side Trigonometric Ratios (I) Adjacent side Opposite side Hypotenuse cos Adjacent side Hypotenuse tan Adjacent side Opposite side
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Trigonometric Ratios (II)
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Special Angles 30° and 60° B D A 60 2 2 2
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Special Angles 30° and 60° C 1 60 30 B A 2
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Special Angle 45° B C A 45 tan 45 1
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Five Special Angles 30 60 45 90 cos 00 sin 00 30 45 60 90
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Trigonometric Ratios of Any Angle
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Signs of Trigonometric Ratios sin 0 cos 0 tan 0 Only sin 0 Only tan 0Only cos 0
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry r Angles in Quadrant II P 2 ( a, b) What are the coordinates of P 2 ? AOP 2 = 180
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry P 2 ( a, b) AOP 2 = 180 Angles in Quadrant II r
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry P 3 ( a, b) Reflex angle AOP 3 = 180 Angles in Quadrant III What are the coordinates of P 3 ? r
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry P 3 ( a, b) Angles in Quadrant III Reflex angle AOP 3 = 180 r
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry P 4 (a, b) Reflex angle AOP 4 = 360 Angles in Quadrant IV What are the coordinates of P 4 ? r
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Angles in Quadrant IV P 4 (a, b) Reflex angle AOP 4 = 360 r
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Negative Angles sin( ) sin(360 ) sin cos( ) cos(360 ) cos tan( ) tan(360 ) tan
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Trigonometric Identities
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Graphs of Trigonometric Functions What are the values of the above trigonometric functions?
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Graphs of Trigonometric Functions
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Graph of Sine Function y sin
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Period of Sine Function y sin y sin 1 11 O 360 Since the graph of sine function y sin will repeat once in every 360 , its period is 360 . sin(360n ) sin for any integer n. 360 180 180 360 540 720 900 1080
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Graph of Cosine Function y cos
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Period of Cosine Function y cos y cos 1 11 O 360 180 180 360 540 720 900 1080 360 Since the graph of cosine function y cos will repeat once in every 360 , its period is 360 . cos(360n ) cos for any integer n.
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Graph of Tangent Function y tan
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry O 360 180 180 360 540 720 900 1080 180 Period of Tangent Function y tan
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Since the graph of tangent function y tan will repeat once in every 180 , its period is 180 . tan(180n ) tan for any integer n. Period of Tangent Function y tan
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Transformation of Trigonometric Graphs How do the values of A, m, and B affect the graph of y A sin m(x ) B?
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry When A 1, the amplitude of the graph is larger than the original one (A 1). When 0 A 1, the amplitude of the graph is smaller than the original one (A 1). Transformation of Trigonometric Graphs
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry When B 0, the graph translates upwards. When B 0, the graph translates downwards. Transformation of Trigonometric Graphs
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry When m 1, the period of the graph decreases. When 0 m 1, the period of the graph increases. Transformation of Trigonometric Graphs
2004 Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry When 0 , the graph translates to the right. When 0 , the graph translates to the left. Transformation of Trigonometric Graphs
End