MSNC (Multi-Harvested Self Powered Sensor Node Circuit )

Slides:



Advertisements
Similar presentations
Analog to Digital Conversion (ADC)
Advertisements

AD Converter UNIT 19 로봇 SW 교육원 조용수. 학습 목표 AD Converter AD Converter Register 2.
A Low-Power 9-bit Pipelined CMOS ADC for the front-end electronics of the Silicon Tracking System Yuri Bocharov, Vladimir Butuzov, Dmitry Osipov, Andrey.
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
ECE4430 Project Presentation
Analog-to-Digital Converters
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
Digital Circuits to Compensate for Energy Harvester Supply Variation Hao-Yen Tang David Burnett.
Analog IC Design First – A OPAMP Design Example. Date: 15th NOV, 2007 報告人:何建興.
Digital-to-Analog & Analog-to- Digital Conversion Anuroop Gaddam.
15. CBM Collaboration Meeting, GSI, Darmstadt, April 12–16, 2010 Status of Front End Electronics N-XYTER PCBs & Power Supply Volker Kleipa, GSI Darmstadt.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Flow sensor circuitry Eduard Stikvoort 00/1A The work was done in Philips Reaearch Eindhoven.
Mehdi Sadi, Italo Armenti Design of a Near Threshold Low Power DLL for Multiphase Clock Generation and Frequency Multiplication.
Digital to Analogue Converter
Wireless IC Node with Compression Heuristics (W.I.N.C.H.) Final Design Review Steve Jocke, Kyle Ringgenberg, Stuart
Guohe Yin, U-Fat Chio, He-Gong Wei, Sai-Weng Sin,
LDO Regulator John O’Hollaren. StandardQuasi-LDOLDO High Dropout Stability not a problem Medium Dropout Stability a concern Low Dropout Stability is a.
MICAS Department of Electrical Engineering (ESAT) AID–EMC: Low Emission Digital Circuit Design Junfeng Zhou Wim Dehaene Update of the “Digital EMC project”
19 October A Stable System Clock Generator Using Reference Clock Sampling Aatmesh Shrivastava Robust Low Power VLSI Group University of Virginia.
Design review Sampling cell – Buffer - Comparator Ps_TDC v2.0 Herve Grabas - University of Chicago.
1 Successive Approximation Analog-to- Digital Conversion at Video Rates 指導教授 :汪輝明 學 生:陳柏宏.
Ultra-low-Power Smart Temperature Sensor with Subthreshold CMOS Circuits International Symposium on Intelligent Signal Processing and Communications, 2006.
CMOS First-order Sigma-Delta Modulator
A 10b Ternary SAR (TSAR) ADC with Decision Time Quantization Based Redundancy Jon Guerber, Manideep Gande, Hariprasath Venkatram, Allen Waters, Un-Ku Moon.
Patricia Gonzalez Divya Akella VLSI Class Project.
RD53 Analog IP blocks WG : developments and plans at CPPM M. Barbero, L. Gallin Martel (LPSC), Dzahini (LPSC), D. Fougeron, R. Gaglione (LAPP), F. Gensolen,
ECE 2799 Electrical and Computer Engineering Design ANALOG to DIGITAL CONVERSION Prof. Bitar Last Update:
Outline Abstract Introduction Bluetooth receiver architecture
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
0808/0809 ADC. Block Diagram ADC ADC0808/ADC Bit μP Compatible A/D Converters with 8-Channel Multiplexer The 8-bit A/D converter uses successive.
HOT CAR BABY DETECTOR Group #20 Luis Pabon, Jian Gao ECE 445 Dec. 8, 2014.
VK-PA-Pico Power Analyzer Picoammeter Mode - Operating Principle to Measure Short Circuit Current (I sc ) of Solar Cell + - Solar Cell To Analog to Digital.
Analog IC design 7주차 Dec.4th Multimedia Lab..
PROJECT 양은별 4/7 일 개인발표 (1). 1.Block diagram 2.Elements investigation - Characteristics - Comparison 3. Elements selection 4. Circuits design 5.
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
HW1_Design of BGR 집적회로설계연구실 유성목.
Proportional To Absolute Temperature Voltage 우대건 1 Analog integrated Circuit.
Sill Torres: Pipelined SAR Pipelined SAR with Comparator-Based Switch-Capacitor Residue Amplification Pedro Henrique Köhler Marra Pinto and Frank Sill.
EE140 Final Project Members: Jason Su Roberto Bandeira Wenpeng Wang.
Analog Integrated Circuits Number : Name: Jo-Yongmin.
Sensor Node Circuits with Solar Energy Harvesting Team : SNEH Date : 2013/05/ Donghyeon-Seo.
Renesas Electronics Europe GmbH A © 2010 Renesas Electronics Corporation. All rights reserved. RL78 AD converter.
Light Tracking Servo System Using Cadmium Sulfide Light Dependent Resistors Brandon Agtarap and Branden Nakahara.
Index 1 PART C1 C2 Csto 2 PART ParamaterValue V OC 2.93V I SC 141.7uA P MAX uW R MPP 15kΩ V MPP 1.46V.
Index 1 PART AC-DC Converter PZT Power Management Unit mc1 mc2 Thermoelectric Generator Charge Pump Load mc1 mc2 MPPT Control Unit En Vv Vt.
3506-D WEST LAKE CENTER DRIVE,
Principles & Applications
SAR ADC Tao Chen.
Data Acquisition System
The open loop gain of this op-amp is 105 and the bandwidth is 10 Hz
Digital Decode & Correction Logic
Project Block Diagram Transmitter Receiver × 2 Input Device Protection
ADC,DAC and sensor interface
Pedro Henrique Köhler Marra Pinto and Frank Sill Torres
ALICE ITS Upgrade : Pixel chip design
ADC, DAC, and Sensor Interfacing
ADC.
Digital-to-Analog & Analog-to-Digital Conversion
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
Simple ADC structures.
Simple ADC structures.
Sample & Hold Circuits CSE598A/EE597G Spring 2006
ADC and Sensor Programming
Project-Dickson charge pump
SIS20:A CMOS ASIC for SOLAR IRRADIANCE SENSORS in MARS SURFACE
ADC and DAC Data Converter
Analog Senior Projects 2019
RD53 Temperature Sensors
Presentation transcript:

MSNC (Multi-Harvested Self Powered Sensor Node Circuit ) 200900864 서요한 200900880 이명한 200900889 정성현

Contents 1. System Block Diagram 2. Research 3. Schedule 4. Reference

1. System Block Diagram

System Block Diagram Solar PMU LDO Temp Sensor LDO Vibration AC/DC SAR ADC Sensor Node

System Block Diagram Spec Input 2.6v 2v LDO Solar out 0~2.25v(10Klux) PZT out 2.9v(Open Circuit) LDO out 1.9v Temp Sensor out 0.67~1.14v SAR ADC 10Bit

2. Research

Solar Cell _ Circuit

Solar Cell (R-P) _ Simulation Vout = 0~2.4V

PZT & AC/DC _ Circuit

PZT & AC/DC _ Circuit

Comparator spec. Gain 62.5dB 3dB freq 15.6kHz UGF 1.75M CMRR 96dB PSRR+ 90dB PSRR- 95dB ICMR 1.35~2.85V Current consumption 2.25uA

PZT & AC/DC Convertor _ Simulation Vp-p=2mV Vout = 2.9v

LDO _ Circuit

LDO Amp spec. Gain 66.8dB 3dB freq 186kHz UGF 390K PM 90(Deg) CMRR PSRR+ 63dB PSRR- 41.5dB ICMR 0~1.3V Current consumption 1.52uA

LDO with Wide-swing _ Circuit

LDO with Wide-swing _ Simulation

LDO with Wide-swing (PZT) _ Circuit 3uA

LDO with Wide-swing (PZT) _ Simulation Vout = 2v

LDO with Wide-swing (SC)_ Simulation

LDO with Wide-swing (SC)_ Simulation Vout = 2v LDO output 2v 출력

PMU(S/W)

PMU(S/W) Vref = 760mV

PMU(S/W) total simulation

PMU(S/W) total simulation(SC) VDD LDO out PMU out

PMU(S/W) total simulation(SC) T = 1m VDD LDO out PMU out

PMU(S/W) total simulation(PZT) VDD LDO out PMU out

PMU(S/W) total simulation(PZT) VDD LDO out PMU out

PMU(S/W) total simulation (PZT) 3K -> 15K

PMU(S/W) total simulation (PZT) VDD LDO out PMU out

PMU(S/W) total simulation (PZT) T = 50m VDD LDO out PMU out

Temp Sensor _ Test

Temp Sensor _ Test

Temp Sensor _ Test _ result 100도 = 1.185V -50도 = 0.713V V범위 = 0.471V Vref = 1.2V, 0.9V, 0.6V

Temp Sensor _ Current consumption = 16.56uA

PTAT _ Circuit Start-up-circuit

PTAT amplifier _ Circuit

PTAT _ Current consumption = 12.6uA

BGR _ Circuit

BGR _ amp circuit

BGR _ Simulation Vref = 1.2V , 0.9V , 0.6V 확인

BGR _ Current consumption = 3.91uA

Clock generator _ Circuit ① ② ③ ④ ⑤ 16 17 ⑪ ⑫ ⑬ ⑭ ⑮ ⑥ ⑦ ⑧ ⑨ ⑩ 18 19 No. 1~5 6~10 11~15 16~19 W/L 800n/15u 800n/45u 50u/50u 1u/1u Ring Oscilator를 이용하여 SAR ADC에 필요한 clock 생성

Clock generator _ Test

Clock generator _ Simulation 주파수 :14.294KHz PMU에 출력 파형을 토대로 동작 주파수 재설계 예정

Clock generator _ Result tt -50도 27도 110도 1.5V 23.4KHz 23.5KHz 23.6KHz 1.8V 45.7KHz 39.5KHz 36.2KHz 2.2V 76.3KHz 64.1KHz 53.8KHz 27도 ss tt ff 1.5V 16.7KHz 23.5KHz 31.9KHz 1.8V 30.5KHz 39.5KHz 50.3KHz 2.2V 51.3KHz 64.1KHz 75.2KHz VDD가 클수록 주파수가 높다 ff, tt, ss 공정 순서로 주파수가 높다

Clock generator _ Result tt -50도 27도 110도 1.5V 851.5n 894.4n 984.9n 1.8V 2.023u 1.942u 1.999u 2.2V 4.647u 4.229u 4.114u 27도 ss tt ff 1.5V 579n 894.4n 1.366u 1.8V 1.335u 1.942u 2.851u 2.2V 3.011u 4.229u 6.01u 단위 : A 단위 : A VDD가 클수록 전류소모가 크다 ff, tt, ss 공정 순서로 전류소모가 크다. 평균적으로 2.44uA의 전류를 소모한다. 주파수가 낮을 수록 낮은 전류를 소모한다.

Comparator _ Circuit Clocked Comparator Clock에 따라 비교 동작을 수행

Comparator _ Test

Comparator _ Simulation Clock이 high일 때 신호를 비교하여 출력한다.

SAR Logic _ Circuit 쉬프트 레지스터 컨트롤 로직 4-bit SAR LOGIC 상단 쉬프트 레지스터와 하단 컨트롤 로직 부분으로 구성 positive edge일 때 D-FF이 동작한다.

SAR Logic _ Test

SAR Logic _ Simulation 1 1 초기화 1 1 1 초기화 SAMPLE값이 0일 때는 SAR LOGIC 초기화(sampling mode),1일 때 비교 동작 Clock에 따라 Comp값이 저장되고 sampling이 0일 때는 초기화됨

SAR Logic _ Simulation 단위 : nA 단위 : nA 온도,VDD,공정 상태마다 정상 작동 확인 tt -50도 27도 110도 1.5V 0.793 0.823 1.474 1.8V 0.968 1.003 1.728 2.2V 1.208 2.108 27도 ss tt ff 1.5V 0.823 0.862 1.8V 1.009 1.003 1.053 2.2V 1.258 1.325 단위 : nA ff -50도 27도 110도 1.5V 0.785 0.862 13.76 1.8V 0.956 1.053 16.88 2.2V 1.192 1.325 22.07 단위 : nA 온도,VDD,공정 상태마다 정상 작동 확인 0.785nA~22.07nA의 전류 소모를 보임 ff & 110도 일때 전류소모가 급격히 커짐

SAR ADC_circuit

SAR ADC_test 4-Bit SAR ADC VPTAT = 900m

SAR ADC_simulation(1) DAC 출력 파형 차동 입력 값을 비교하여 검은색 기준으로 값을 얻는다. 1 0 0 0

SAR ADC_simulation(2) 1 ADC 출력 값 =1000(2) 1bit의 전압 크기 = 600m/24 = 37.5m/bit ADC 출력 변환 =37.5*8m+600m =900m 입력과 같음 1

3. Schedule

Schedule 3월 4월 5월 6월 7월 8월 9월 10월 11월 회로 설계 레이아웃 IC칩 제작 PCB 설계 PCB 제작 결과 측정 논문 작성

4. Reference

Reference [1] 서동현, 조용민, 우대건 “Sensor Node Circuits with Solar Energy Harvesting” 인천대 학 사논문, 2013 [2] 윤대원 “Energy Harvesting" 사이언스지, 2011 [3] 이수진, 김상우, 함영복 “압전에너지 하베스팅 기술동향 및 전망” KISTI 2013정보분석보고서, 2013 [4] 윤은정 “Design of Triple-input Energy Harvesting Circuit with MPPT Control” 인천대 석사논문, 2012 [5] 컴퓨터인터넷IT용어대사전, 전산용어사전편찬위원회, 일진사 2011 [6] 유종근 “Power Management Unit for Self-Powered Systems Based on Solar Energy Harvesting" [7] Daniela De Venuto and Eduard Stikvoort "Low Power High-Resolution Smart Temperature Sensor for Autonomous Multi-Sensor System" IEEE SENSORS JOURNAL, VOL. 12 [8] Olena Shvaichenko “METHODS OF DESIGNING ANALOG-TO-DIGITAL CONVERTERS” IHP, 2011

Thank you~