Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
H 2 CuF An overview of H 2 MX complexes G.S. Grubbs II, D.J. Frohman, Z. Yu, S.E. Novick TH13, Columbus 2013 Inorg. Chem. 52, (2013).
SEMIEXPERIMENTAL EQUILIBRIUM STRUCTURES FOR THE EQUATORIAL CONFORMERS OF N- METHYLPIPERIDONE AND TROPINONE BY THE MIXED ESTIMATION METHOD JEAN DEMAISON,
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Joseph A. Fournier, Robert K. Bohn, John A. Montgomery, Jr. University of Connecticut, Storrs, CT Microwave Spectroscopy and Structures of Perfluorohexane.
THE ELECTRONIC SPECTRUM OF JET-COOLED H 2 PO, THE PROTOTYPICAL PHOSPHORYL FREE RADICAL Mohammed A. Gharaibeh and Dennis J. Clouthier Department of Chemistry,
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
1 -RH06- PROTON DONOR/ACCEPTOR PROPENSITIES OF AMMONIA ROTATIONAL STUDIES OF ITS MOLECULAR COMPLEXES WITH ORGANIC MOLECULES 64 th OSU International Symposium.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,
Analysis of the microwave spectrum of the three-top molecule trimethoxylmethane L. Coudert, a G. Feng, b and W. Caminati b a Laboratoire Interuniversitaire.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Accurate Equilibrium Structures of Piperidine and Cyclohexane JEAN DEMAISON, Laboratoire de Physique de Lasers, Atomes et Molécules, Université de Lille.
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Rotational spectroscopy of newly detected atmospheric ozone depleters: CF 3 CH 2 Cl, CF 3 CCl 3, and CFClCCl 3 Zbigniew Kisiel, Ewa Białkowska-Jaworska,
ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
 -  and CH-  interactions in the molecular nitrogen- and methane-pyridine complexes Department of Chemistry University of Alberta.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
1 L. Spada, Q. Gou, B.M. Giuliano, W. Caminati. 70 th Symposium, Urbana-Champaign, June 22-26, RH06- THE ROTATIONAL SPECTRUM OF PYRIDINE – FORMIC.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
IN THE GAS PHASE AND IN SOLUTION
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Pure rotational spectrum of the “non-polar” dimer of Formic acid
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS
The Conformational Landscape of Serinol
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
N-METHYL INVERSION IN PSEUDO-PELLETIERINE
MW SYSTEMATIC STUDY OF ALKALOIDS: THE DISTORTED TROPANE OF SCOPOLINE
and analysis of hyperfine structure from four quadrupolar nuclei
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther Caminati, 1 Emilio J. Cocinero 3 1 Dipartimento di Chimica “G. Ciamician” dell’Università, Via Selmi 2, I Bologna, Italy 2 Departamento de Química Física y Química Inorganica, Facultad de Ciencias, Universidad de Valladolid, E Valladolid, Spain 3 Departamento de Quimica Fisica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco,E Bilbao, Spain Columbus

2 Introduction With formaldehyde Angew. Chem. Int. Ed., 2011, 50, Angew. Chem. Int. Ed., 2006, 45, J. Am. Chem. Soc. 1999, 121,

3 I.Difluoromethane − Formaldehyde CH 2 F 2 − H 2 CO Phys. Chem. Chem. Phys., 2013, 15, 6714.

MP2/ G** calculated spectroscopic parameters of the plausible conformers of CH 2 F 2 – H 2 CO Ab initio calculation 4 ΔE/cm ΔE BSSE /cm A, B, C /MHz13898, 1766, , 1307, 1176 |μ a |, |μ b |, |μ c |/D2.5, 0.4, , 0.0, 0.0 D J /kHz D JK /kHz M cc /uǺ

Internal Rotation The 0 + and 0 ­ component lines of the 4 04 ­3 03 μ a transition of normal CH 2 F 2 – H 2 CO Relative intensity 1:3 5 Rotational spectra

CH 2 F 2 -HCOH ( 0 + ) CH 2 F 2 -HCOH ( 0 - ) 13 CH 2 F 2 -HCOH ( 0 - ) CH 2 F 2 -H 13 COH ( 0 - ) A/MHz (3) (3)13675(2)13671(2) B/MHz (1) (1) (8) (8) C/MHz (1) (1) (8) (8) D J /kHz2.33(1) 2.29(2)2.22(2) D JK /kHz21.25(5)20.78(5)[20.78] d 1 /kHz-0.24(1)-0.23(1)[-0.23] d 2 kHz0.029(6)0.022(6)[0.022]  /kHz N23 99 Spectroscopic parameters for complex of CH 2 F 2 – H 2 CO including 13 C isotopologues Rotational spectra 6 It’s not possible to determine the vibrational energy spacing (∆E) between the two tunneling states

Molecular Structure C–H … F–C Bifurcated C–H 2 … O=C Weak hydrogen bonds(WHB) a/Åa/Åb/Åc/Å C CH2F2 Exp.±0.965(3)±0.370(8)0 Cal C H2CO Exp.±2.551(1)±0.389(8)0 Cal Substitution coordinates of the two carbon atoms M cc = 1.69 uÅ 2 M cc = 1.65 uÅ 2 7

Molecular Structure The parameters fitted r H8F2 /Å ∠ C7H8 … F2/° ∠ H8 … F2C1/° Exp.(r 0 )2.658(1)113.56(1)113.41(5) Cal The parameters derived r/År/Åα/°β/° Exp.(r 0 )3.132(1)73.58(5)84.99(5) Cal

Internal Rotation Experimental and calculated data Exp.Cal. ∆M aa /uǺ ∆M bb /uǺ ∆M cc /uǺ ∆E/MHz-3411 Potential barrier and structural relaxations V 2 =180(10) cm -1 ∆r =0.027Å∆α =-1.4°∆β = 2.6(5)° J. Mol. Spectrosc. 1979, 76, 266 Potential energy pathway Flexible Model Structural relaxations

10 Internal Rotation Flexible model ERHAM ΔE/GHz  /° ΔE/GHz CH 2 F 2 -H 2 O CH 2 ClF-H 2 O CHClF 2 -H 2 O CH 2 F 2 -CH 2 O Tunnelling splittings calculated for some complexes of freons with C 2v symmetric molecules J. Mol. Struct., 2005, 742, 87. Angew. Chem. Int. Ed., 2006, 45, J. Mol. Spectrpsc.., 2011, 268, 7.

Dissociation Energy Stretching force constant: Dissociation energy by assuming a Lennard-Jones potential function: a b R CM =3.65 Å 9.3 Nm kJmol J. Chem. Phys. 1983, 78, Can. J. Phys. 1975, 53, J. Am. Chem. Soc. 1963, 85, 1715.

Dissociation Energy ComplexesE D /kJ mol -1 CH 2 F 2 … OCS2.1 (CH 2 F 2 ) CH 2 F 2 … H 2 O7.5 CH 2 F 2 … C 2 H 4 O9.6 CH 2 F 2 … H 2 CO10.4 J. Phys. Chem. A, 2008, 112, Angew. Chem. Int. Ed. 1999, 38, J. Am. Chem. Soc. 1999, 121, ChemPhysChem 2004, 5,

13 II. Chlorofluoromethane − Formaldehyde CH 2 FCl − H 2 CO

14 Ab initio calculation ΔE/cm ΔE BSSE /cm A, B, C /MHz 4976, 1995, , 1625, , 1196, 1106 |μ a |, |μ b |, |μ c |/D 0.3, 0.0, , 0.8, , 0.4, 0.,0 χ aa /MHz ( χ bb - χ cc )/MHz M cc /uǺ MP2/ G** calculated spectroscopic parameters of the plausible conformers of CH 2 FCl – H 2 CO

15 Rotational spectra I ( 35 Cl)=3/2 I ( 37 Cl)=3/2 Recorded 3 13 ←2 12 transition of the observed conformer of CH 2 FCl-H 2 CO showing the 35 Cl hyperfine structure and tunnelling splitting due to the internal motion of formaldehyde. Relative intensity 1:3

16 Rotational spectra 35 Cl 37 Cl A/MHz (2) (2) (4) (4) B/MHz (4) (4) (3) (3) C/MHz (4) (4) (2) (2) χ aa /MHz31.13(1)31.11(2)24.59(4)24.54(5) (χ bb - χ cc )/MHz (2) (3)-83.53(4)-83.56(5) Δ c /uÅ D J /kHz1.595(2)[1.595] D JK /kHz17.77(4)[17.77] d 1 /kHz0.329(3)[0.329] d 2 /kHz0.086(2)[0.086]  /kHz N15070 Spectroscopic parameters for complex of CH 2 FCl – H 2 CO

17 Molecular Structure Bond length/ÅValence angle/°Dihedral angel/° Cl2C F3C11.370F3C1Cl H4C11.086H4C1F3109.0H4C1F3Cl H5C11.086H5C1F3109.0H5C1F3H O6Cl23.554(8)O6Cl2C161.9(2)O6Cl2C1F C7O61.215C7O6Cl282.8(10)C7O6Cl2C H8C71.104H8C7O6121.6H8C7O6C10.0 H9C71.104H9C7O6121.6H9C7O6H Derived structural parameters r 1 /Å2.918α/°120.8 r 2 /Å2.821β/°96.6 R CM /Å3.700γ/°96.7 r 0 and r e (MP2/ G (d, p)) geometries of the CH 2 FCl-H 2 CO C–H … Cl–C Bifurcated C–H 2 … O=C Weak hydrogen bonds(WHB)

Internal Rotation Experimental and calculated data Exp.Cal. ∆M aa /uǺ ∆M bb /uǺ ∆M cc /uǺ ∆E/MHz-5389 Potential barrier and structural relaxations V 2 =125(10) cm -1 ∆R=-0.098Å∆θ=-2.3°∆φ= 12.2(5)° J. Mol. Spectrosc. 1979, 76, 266 Potential energy pathway Flexible Model Structural relaxations R(τ) = R 0 + 1/2 ΔR [1 – cos (2τ)] θ(τ) = θ 0 + 1/2 Δθ [1 – cos (2τ)] ϕ (τ) = ϕ 0 + 1/2 Δ ϕ [1 – cos (2τ)

Dissociation Energy Stretching force constant: Dissociation energy by assuming a Lennard-Jones potential function: complexk s /Nm -1 E B /kJmol -1 CH 2 FCl … H 2 O CH 2 FCl … H 2 CO J. Chem. Phys. 1983, 78, Can. J. Phys. 1975, 53, J. Am. Chem. Soc. 1963, 85, 1715.

20 III. Chlorotrifluoromethane − Formaldehyde CF 3 Cl − H 2 CO

MP2/ G** calculated spectroscopic parameters of the plausible conformers of CF 3 Cl – H 2 CO Ab initio calculation 21 ΔE/cm ΔE BSSE /cm A, B, C /MHz 4821, 787, , 872, , 848, , 894, 795 |μ a |, |μ b |, |μ c |/D 1.7,2.0,0.02.1, 0.0, , 1.7, , 2.8, 0.0 χ aa /MHz ( χ bb - χ cc )/MHz

22 Rotational spectra Recorded 6 1 ←5 1 transition of the observed conformer of CF 3 Cl- H 2 CO showing the 35 Cl hyperfine structure and the internal motion of formaldehyde. Feature of symmetric top

23 Rotational spectra m = 0m = ±1 CF 3 35 Cl-H 2 COCF 3 37 Cl-H 2 COCF 3 35 Cl-H 2 COCF 3 37 Cl-H 2 CO B/MHz (2) (3) (3) (4) 1.5χ aa /MHz (2)-87.0(2)-110.3(2)-87.4(4) D J /kHz1.642(1)1.639(3)1.660(3)1.676(5) D JK /MHz1.7050(3)1.7116(2)1.6914(2)[1.6914] H JK /kHz0.670(3)[0.670] σ/kHz N An effective symmetric top

24 Molecular Structure a/Åa/Å rere rsrs ±0.294(5) Assuming that the formation of the complex does not affect the electric field gradient at chlorine nucleus: χ aa = 0.5χ z (3cos 2 θ za - 1) θ = 10.6° r e and r s coordinates of substituted chlorine atom Halogen Bond C −Cl···O=C

Dissociation Energy Stretching force constant: Dissociation energy by assuming a Lennard-Jones potential function: k s = 128π 4 (μR CM ) 2 B 4 /hD J E B = 1/72k s R 2 CM complexk s /Nm -1 E B /kJmol -1 CF 3 Cl … H 2 O CF 3 Cl … H 2 CO J. Chem. Phys. 1983, 78, Can. J. Phys. 1975, 53, J. Am. Chem. Soc. 1963, 85, 1715.

26 Conclusions E D = 7.5 kJ mol -1 V 2 = 340 cm -1 ∆E = 0.66 GHz E D = 10.4 kJ mol -1 V 2 = 180 cm -1 ∆E = 3.41 GHz E D = 8.5 kJ mol -1 V 2 = 336 cm -1 ∆E = 0.82 GHz E D = 9.8 kJ mol -1 V 2 = 125 cm -1 ∆E = 5.39 GHz E D = 7.7 kJ mol -1 E D = 11.0 kJ mol -1

27 Acknowledgement Prof. W. Caminati Dr. L. B. FaveroDr. A. MarisDr. L. Evangelisti Ms. C. Calabrese Dr. F. Gang Prof. S. Melandri Thanks for attention ! attention ! Mr. L. Spada