PRELIMINARII Un semnal discret este definit pe mulţimea numerelor întregi Z → R Mulţimea Z are semnificaţia de timp (discret) Not ă m cu x[n] valoarea.

Slides:



Advertisements
Similar presentations
Plotting Selim Aksoy Bilkent University Department of Computer Engineering
Advertisements

Lecture (4) Plotting & Programming (1) Eng. Osama Talaat 1.
2D Plots 1 ENGR 1181 MATLAB 12.
Introduction to Graphing Using MATLAB. Line Graphs  Useful for graphing functions  Useful for displaying data trends over time  Useful for showing.
Introduction to MATLAB for Biomedical Engineering BME 1008 Introduction to Biomedical Engineering FIU, Spring 2015 Lesson 2: Element-wise vs. matrix operations.
MA/CS375 Fall MA/CS 375 Fall 2002 Lecture 4.
© red ©
Introduction to MATLAB Northeastern University: College of Computer and Information Science Co-op Preparation University (CPU) 10/27/2003.
Introduction to MATLAB Northeastern University: College of Computer and Information Science Co-op Preparation University (CPU) 10/27/2003.
MATLAB - Lecture 22A Two Dimensional Plots / Chapter 5 Topics Covered:
Chapter 2 MATLAB Fundamentals.
Vectors and Plotting Selim Aksoy Bilkent University Department of Computer Engineering
Introduction to Matlab 332:202 Discrete Mathematics Spring 2007.
Lecture 9 Plotting in 2-D Plotting in 2-D, Plotting Multiple Curves, Plotting with Figures, Plot Settings, Scaling, Legends © 2007 Daniel Valentine. All.
MatlABBA. The Colon Operator (1) This is one MatLab’s most important operators 1:10 means the vector – :-7:50 –
Plotting. Basic Plotting Two vectors of x and y values needed. Vectors need to be of the same length, but not necessarily of the same geometry. For example,
EPSII 59:006 Spring Outline Managing Your Session File Usage  Saving Workspace  Loading Data Files  Creating M-files More on Matrices Review.
Introduction to Matlab 7 Part III 1Daniel Baur / Introduction to Matlab Part III Daniel Baur ETH Zurich, Institut für Chemie- und Bioingenieurwissenschaften.
PLOTS AND FIGURES DAVID COOPER SUMMER Plots One of the primary uses for MATLAB is to be able to create publication quality figures from you data.
ENG College of Engineering Engineering Education Innovation Center 1 2D Plots 1 in MATLAB Topics Covered: 1.Plotting basic 2-D plots The plot()
„  1999 BG Mobasseri1 9/18/2015 June 2 GRAPHICS IN MATLAB- PART I BASIC PLOTTING.
ELG 3120 Signal and System Analysis 1 Introduction to MATLAB TAs Wei Zhang Ozgur Ekici (Section A)(Section B) ELG 3120 Lab Tutorial 1.
COMP 116: Introduction to Scientific Programming Lecture 5: Plotting, Scripts and publishing.
Lecture 2 - Matlab Introduction CVEN 302 June 5, 2002.
Barbara/Pratik/Yu. Outline Matlab desktop M-files Variables Arrays Plots.
Plot (x-values, y-values) >> x = linspace (-3, 3, 20); >> x = linspace (-3, 3, 20); >> y = 2*x – 1; >> y = 2*x – 1; >> plot (x, y) >> plot (x, y)
Introduction to Scientific Programming in MATLAB Michael McLennan Software Architect HUBzero™ Platform for Scientific Collaboration.
EGR 106 Lecture 6 2-D Plotting Graphical presentation has become the standard method to show technical information. Engineers use plots to analyze, visualize,
EGR 115 Introduction to Computing for Engineers 2D Plotting – Part I Wednesday 17 Sept 2014 EGR 115 Introduction to Computing for Engineers.
= 5 = 2 = 4 = 3 How could I make 13 from these shapes? How could I make 19 from these shapes? STARTER.
Fraction of black hearts Fraction of yellow triangles.
Introduction to MATLAB ENGR 1181 MATLAB 1. MATLAB Built-in Math Functions  Pre-defined in MATLAB ready for use exp(x) – exponential (e x ) log(x) – natural.
NET 222: COMMUNICATIONS AND NETWORKS FUNDAMENTALS ( NET 222: COMMUNICATIONS AND NETWORKS FUNDAMENTALS (PRACTICAL PART) Lab 2 : potting to Matlab Networks.
Crank arm = orange plate with cavity crank axis = x at center of black circle cavity 6 = hole in crank arm cam 7 = blue plate inside cavity in crank arm.
Seeing in colour Stare at the coloured dot in the middle of the next picture for a minute. Then describe what you see when you look at the next slide.
CS100A, Fall 1998, Lecture 191 CS100A, Fall 1998 Lecture 19, Thursday Nov 05 Matlab Concepts: Matlab arrays Matlab subscripting Matlab plotting.
CS100A, Fall 1998, Lecture 201 CS100A, Fall 1998 Lecture 20, Tuesday Nov 10 More Matlab Concepts: plotting (cont.) 2-D arrays Control structures: while,
Plotting. 2 Initializing Vectors colon operator x = 1:2:10 x = y = 0:0.1:0.5 y =
Outline What is MATLAB MATLAB desktop Variables, Vectors and Matrices Matrix operations Array operations Built-in functions: Scalar, Vector, Matrix Data.
EGR 106 – Week 5 – 2-D Plots Question : Why do engineers use plots? Answer : To analyze, visualize, and present data. Matlab has many useful plotting options.
How to use MATLAB (using M-files) Double click this icon To start Matlab 6.5.
Prof. N. P. Jadhav Presented by. Overview of MATLAB environment MATLAB is an interactive, matrix-based system for scientific and engineering numeric computation.
Creating a Plot The plot function can take one or more inputs; e.g. plot (x, y) or plot (y) Note that in the two-argument version, the vectors x and.
Introduction to MATLAB
Course Information Do not rely on color to distinguish curves (due to black-white printout). Use different line styles to distinguish curves (solid, dashed,
Lecture 25: Exploring data
Matrices and Arrays.
Seeing in colour Stare at the coloured dot in the middle of the next picture for a minute. Then describe what you see when you look at the next slide.
Net 222: Communications and networks fundamentals (Practical Part)
Net 222: Communications and networks fundamentals (Practical Part)
Net 222: Communications and networks fundamentals (Practical Part)
MATLAB How to use (using M-files) Double click this icon
MATLAB How to use (using M-files) Double click this icon
Fractions 1/2 1/8 1/3 6/8 3/4.

MATLAB How to use (using M-files)
Two ways to discuss color 1) Addition 2) Subtraction
Introduction to MATLAB Plotting LAB 3
Introduction to MATLAB
Yang-Ming University, Taipei, Taiwan
Introduction to MATLAB
Plotting Signals in MATLAB
What Color is it?.
Observed (symbols) and model predicted (lines) dopamine time courses in rats following D-amphetamine administration. Observed (symbols) and model predicted.
Announcements P3 due today
numbers letters colors shapes animals 1pt 1 pt 1 pt 1pt 1 pt 2 pt 2 pt
Introduction to Matlab
Nat. Rev. Cardiol. doi: /nrcardio

Shapes.
Presentation transcript:

PRELIMINARII

Un semnal discret este definit pe mulţimea numerelor întregi Z → R Mulţimea Z are semnificaţia de timp (discret) Not ă m cu x[n] valoarea semnalului la momentul n; numim x[n] şi eşantionul n al semnalului Printr-un abuz curent de notaţie, vom scrie şi c ă întreg semnalul este x[n], subînţelegând prin aceasta c ă n ∈ Z este o variabil ă liber ă.

Exemplu de semnal discret

Semnalul Impuls unitate discret

Semnalul discretTreapt ă unitate

ELEMENTE (elementare!) de MATLAB

>> a = [ ] a = >> a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a = >> a = [1 : 1 : 10] a = >> a = linspace(1, 10, 10) a =

>> a = [1 : 1.5 : 7] a = >> a = linspace(1, 7, 5) a = >> a = linspace(1, 7, 4) a =

>> a = [1; 2; 3; 4] a = >> a = [ ; ] a = >> a = [1, 2, 3, 4; 5, 6, 7, 8] a =

>> a = [ ; ; ] a = >> b = [3 4; 1 1; 4 2; 3 1; 1 4] b = >> c = a * b c =

>> a = [2 3; 2 4; 1 1; 3 2] a = >> b = [3 2 4; 2 1 5] b = >> c = a * b c =

>> a = [2 : 0.5 : 6] a = >> b = [5 : 2 : 21] b = >> z = a + b z =

>> z = a z = >> t = a * b Error using * Inner matrix dimensions must agree. >> t = a.* b t =

>> a = [1 : 0.25 : 3] a = >> b = [1 : 0.5 : 5] b = >> v = a.^b v =

>> syms x >> y = (x - 1)*(x - 2)*(x - 3) y = (x - 1)*(x - 2)*(x - 3) >> z = collect(y) z = x^3 - 6*x^2 + 11*x – 6 >> t = factor(z) t = [ x - 3, x - 1, x - 2]

>> y = (x - 1) * (x^2 + x + 1) * (x - 2) * (x - 3) y = (x - 1)*(x - 2)*(x - 3)*(x^2 + x + 1) >> z = collect(y) z = x^5 - 5*x^4 + 6*x^3 - x^2 + 5*x - 6 >> t = factor(z) t = [ x - 1, x - 2, x - 3, x^2 + x + 1]

>> y = (-5:0.1:4).^3; >> plot(y) >> length(y) ans = 91

>> x = -5:0.1:4; >> y = (x).^3; >> plot(x,y)

>> xlabel('x'); >> ylabel('y'); >> title('Graficul functiei y = x^3'); >> grid;

>> x1 = 0:.1:10; >> y1 = cos(x1); >> x2 = 1.5*x1; >> y2 = 2*cos(x2); >> x3 = 2*x1; >> y3 = 3*sin(x3); >> plot(x1,y1,x2,y2,x3,y3)

SpecifierLine Style - Solid line (default) -- Dashed line : Dotted line -. Dash-dot line SpecifierMarker o Circle + Plus sign * Asterisk. Point x Cross s Square d Diamond ^ Upward-pointing triangle v Downward-pointing triangle > Right-pointing triangle < Left-pointing triangle p Pentagram h Hexagram SpecifierColor y yellow m magenta c cyan r red g green b blue w white k black

>> x = -2:.1:2; >> plot(x,sin(x),'-r'); >> hold on >> plot(x,sin(x.^2),'--b'); >> plot(x,cos(x.^2),':k'); >> hold off

>> n = [-10:1:10] >> imp_unit = [ ] >> plot(n,imp_unit) >> axis([-11,11,-1.2,1.2]) >> grid >> axis([-11,11,-0.2,1.2])

>> stem(n,imp_unit) >> axis([-11,11,-1.2,1.2]) >> grid >> axis([-11,11,-0.2,1.2])

>> tr_unit = [ ] >> plot(n,tr_unit) >> axis([-11,11,-1.2,1.2]) >> grid >> axis([-11,11,-0.2,1.2])

>> stem(n,tr_unit) >> axis([-11,11,-1.2,1.2]) >> grid >> axis([-11,11,-0.2,1.2])

>> w = pi/3 >> phi = 0 >> t = [-10:0.01:10] >> sin_1 = sin(w*t) >> plot(t,sin_1) >> axis([-11,11,-1.2,1.2]) >> grid

>> sin_real_1 = sin(w*n + phi) >> plot(n,sin_real_1,t,sin_1) >> axis([-11,11,-1.2,1.2]) >> grid

>> plot(n,sin_real_1,t,sin_1) >> axis([-11,11,-1.2,1.2]) >> grid

>> stem(n,sin_real_1) >> axis([-11,11,-1.2,1.2]) >> grid

>> w = 1 >> sin_2 = sin(w*t); >> plot(t,sin_2) >> axis([-11,11,-1.2,1.2]) >> grid

>> sin_real_2 = sin(w*n + phi); >> plot(n,sin_real_2) >> axis([-11,11,-1.2,1.2]) >> grid

>> plot(n,sin_real_2,t,sin_2 ) >> axis([-11,11,-1.2,1.2]) >> grid

>> stem(n,sin_real_2) >> axis([-11,11,-1.2,1.2]) >> grid

>> j = sqrt(-1) >> stem(n,sin_compl) >> axis([-11,11,-1.2,1.2]) >> grid

DEFINIŢIE ŞI FORME SPECIALE

δ(t)  1 şi δ(t-T)  e -sT

PROPRIETĂŢI ŞI TEOREME LINIARITATEA

DEPLASAREA ÎN DOMENIUL TIMPULUI a semnalului f[n] u 0 [n]

DEPLASAREA LA DREAPTA ÎN DOMENIUL TIMPULUI

DEPLASAREA LA STANGA ÎN DOMENIUL TIMPULUI

ÎNMULŢIREA CU a n ÎN DOMENIUL TIMPULUI

ÎNMULŢIREA CU e -naT ÎN DOMENIUL TIMPULUI

ÎNMULŢIREA CU n ŞI n 2 ÎN DOMENIUL TIMPULUI

SUMAREA ÎN DOMENIUL TIMPULUI Not ă m Demonstraţie

CONVOLUŢIA ÎN DOMENIUL TIMPULUI

CONVOLUŢIA ÎN DOMENIUL FRECVENŢĂ

TEOREMA VALORII FINALE TEOREMA VALORII INIŢIALE

Proprietatea/TeoremaDomeniul timp Liniaritatea Deplasarea lui f[n]u n [n] Deplasarea la dreapta Deplasarea la stânga Înmulţirea cu a n Înmulţirea cu e -naT Înmulţirea cu n Înmulţirea cu n 2 Sumarea în domeniul timp Convoluţia în domeniul timp Convoluţia în frecvenţ ă Teorema valorii iniţiale Teorema valorii finale

dup ă VACANŢĂ !

SĂRBĂTORI FERICITE!