Visualization Design Principles cs5984: Information Visualization Chris North.

Slides:



Advertisements
Similar presentations
Multi-Dimensional Data Visualization
Advertisements

INFORMATION MURAL A technique for displaying and navigating large information spaces Dean F. Jerding and John T. Stasko Graphics, Visualization, and Usability.
CS 5764 Information Visualization Dr. Chris North Purvi Saraiya GTA.
Dynamic Queries cs5984: Information Visualization Chris North.
Visualization Basics CS 5764: Information Visualization Chris North.
cs5764: Information Visualization Chris North
Infovis and data george, laura, tjerk.
CS 5764 Information Visualization Dr. Chris North.
CS 5764 Information Visualization Dr. Chris North GTA: Beth Yost.
Table Lens From papers 1 and 2 By Tichomir Tenev, Ramana Rao, and Stuart K. Card.
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
Information Design and Visualization
Dynamic Queries –presented by Bhaskar Chatterjee Visual Alternative to SQL for Querying databases Depending on data types and the values decides the input.
Trees (Hierarchical Information) cs5984: Information Visualization Chris North.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Designing the User Interface: Strategies for Effective Human-Computer.
Fall 2002CS/PSY Information Visualization Picture worth 1000 words... Agenda Information Visualization overview  Definition  Principles  Examples.
Multi-Dimensional Functions cs5984: Information Visualization Chris North.
1 CS430: Information Discovery Lecture 18 Usability 3.
2-D cs5984: Information Visualization Chris North.
Document Collections cs5984: Information Visualization Chris North.
Copyright © 2005, Pearson Education, Inc. Slides from resources for: Designing the User Interface 4th Edition by Ben Shneiderman & Catherine Plaisant Slides.
How (not) to lie with visualization cs5984: Information Visualization Chris North.
Multiple View Strategies cs5984: Information Visualization Chris North.
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
VisDB: Database Exploration Using Multidimensional Visualization Maithili Narasimha 4/24/2001.
C. Ahlberg & B. Shneiderman (1994)
CS3041 – Final week Today: Searching and Visualization Friday: Software tools –Study guide distributed (in class only) Monday: Social Imps –Study guide.
3-D Data cs5984: Information Visualization Chris North.
VizDB A tool to support Exploration of large databases By using Human Visual System To analyze mid-size to large data.
Information Visualization 2: Overview and Navigation Chris North cs3724: HCI.
Information Visualization Chris North cs3724: HCI.
Tight Coupling of Dynamic Query Filters with Starfield Displays / Spotfire.net Desktop By Chris Ahlberg and Ben Shneiderman / Spotfire Inc. IC280 5/9/02.
Dynamic Queries cs5984: Information Visualization Chris North.
1D & 2D Spaces for Representing Data Mao Lin Huang.
Visual Overview Strategies cs5984: Information Visualization Chris North.
Visage: An All-in-One Tool A Paper by Roth, Lucas, Senn, et al. Presented by Josh Steele.
Review Chris North cs3724: HCI. Midterm Topics Scenario-based design: (ch 1-4) SBD background –metrics, tradeoffs, scenarios Requirements analysis –Field.
INFORMATION VISUALIZATION
Interaction Styles Chris North cs3724: HCI. Presentations mike miller sean king Vote: UI Hall of Fame/Shame?
WorkSpaces cs5984: Information Visualization Chris North.
3-D Information cs5764: Information Visualization Chris North.
Cs5984: Information Visualization Chris North GTA: Purvi Saraiya Infovis meister: Nathan.
Visual Overview Strategies cs5984: Information Visualization Chris North.
Multi-Dimensional Data Visualization
Multi-Dimensional Data Visualization cs5984: Information Visualization Chris North.
Information Visualization: Navigation Chris North cs3724: HCI.
Multiple Views cs5984: Information Visualization Chris North.
Table Lens Paper – The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus + Context Visualization for Tabular Information.
Information Visualization: Navigation
cs5984: Information Visualization Chris North
Multi-Dimensional Data Visualization 2
CSC420 Showing Complex Data.
Datamining : Refers to extracting or mining knowledge from large amounts of data Applications : Market Analysis Fraud Detection Customer Retention Production.
cs5984: Information Visualization Chris North
cs5764: Information Visualization Chris North
Information Visualization 2: Overview and Navigation
Information Visualization Picture worth 1000 words...
cs5984: Information Visualization Chris North
cs5984: Information Visualization Chris North
Information Design and Visualization
cs5984: Information Visualization Chris North
Information Visualization 2: Overview and Navigation
Information Visualization (Part 1)
CHAPTER 7: Information Visualization
Information Visualization
CHAPTER 14: Information Visualization
cs5984: Information Visualization Chris North
Star Coordinates : A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions Rohit Kelapure & David Tussedorf.
Multi-Dimensional Data Visualization 2
Comp 15 - Usability & Human Factors
Presentation transcript:

Visualization Design Principles cs5984: Information Visualization Chris North

Quiz What is the purpose of visualization?

Basic Visualization Model Data Visualization Visual Mapping Interaction

Data Table Attributes (aka: dimensions, variables, columns, …) Items (aka: cases, tuples, data points, rows, …) Data Values Data Types: Quantitative Ordinal Categorical/Nominal

Visual Mapping 1.Map: data items  visual marks Visual marks: Points Lines Areas Volumes

Visual Mapping 1.Map: data items  visual marks 2.Map: data item attributes  visual mark attributes Visual mark attributes: Position, x, y Size, length, area, volume Orientation, angle, slope Color, gray scale, texture Shape

Example Hard drives for sale: price ($), capacity (MB), quality rating (1-5) P C Color = rating

Example: Spotfire Film database Year  X Length  Y Popularity  size Subject  color Award?  shape

Ranking Visual Attributes 1.Position 2.Length 3.Angle, Slope 4.Size 5.Color Increased accuracy for quantitative data -W.S. Cleveland

Basic Visualization Model Data Visualization Visual Mapping Interaction So far: simple static charts Most of semester: more complex mappings interaction strategies

Primary Inputs: Data User Task Compare, known item search, patterns, outliers,… Scale # items # attributes User characteristics Standards/guidelines System resources Visualization Design Process Design Visualization Bag of tricks: View types Interaction strategies

Issue: Scale # of attributes (dimensionality) # of items # of possible values (e.g. bits/value)

Design Principles 5 HCI Metrics: –User performance *** Time, success rate, recovery, clicks, actions –Learning time –Error rate –Retention time –User satisfaction

Cost of Knowledge Frequently accessed info should be quick Infrequently accessed info can be slow

Increase Data Density Calculate data/pixel “A pixel is a terrible thing to waste.”

Eliminate “Chart Junk” How much “ink” is used for non-data? Reclaim empty space (% screen empty) Attempt simplicity (e.g. am I using 3d just for coolness?)

Interactivity Interaction to handle increased scale Direct Manipulation –Visual representation –Rapid, incremental, reversible actions –Pointing instead of typing –Immediate, continuous feedback Encourage exploration

Information Visualization Mantra Overview first, zoom and filter, then details on demand E.g. Spotfire

The “Insight” Factor Avoid the temptation to design a form-based search engine More tasks than just “search” How do I know what to “search” for? What if there’s something better that I don’t know to search for? Hides the data

Open your mind Think bigger, broader Does the design help me explore, learn, understand? Reveals the data

Class Motto Show me the data!

Information Types Multi-dimensional: databases,… 1D: timelines,… 2D: maps,… 3D: volumes,… Hierarchies/Trees: directories,… Networks/Graphs: web, communications,… Document collections: digital libraries,…

Assignment + Presentations Book: Ch. 1, 3, 4 Read for Tues: –Inselberg “Multidimensional detective” (parallel coordinates) – ganesh, christa –Kandogan “Star Coordinates” – rohit, david Read for Thurs: –Rao “Table Lens” – harsha, vishal –Keim “VisDB” – ming, binli

Homework #1 Due Sept 6 (1 week) Data: Eye-tracking data Web logs Multi-D engineering data Bio-informatics? User study data GTA Purvi: Demos in 104c: Friday 4pm Available in 104c: F,M-W 4-7pm

Projects Proposal due: Sept 13

Presentations Mapping Show pictures / demo / video Strengths, weaknesses Hci metrics, insight factor