Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.

Slides:



Advertisements
Similar presentations
QUANTITATIVE METHODS FOR BUSINESS 8e
Advertisements

Decision Theory.
Chapter 3 Decision Analysis.
Decision Analysis Chapter 3
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Dr. C. Lightner Fayetteville State University
Decision analysis: part 2
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 7 Decision Analysis
Slides prepared by JOHN LOUCKS St. Edward’s University.
BA 452 Lesson C.3 Statistical Decision Making ReadingsReadings Chapter 13 Decision Analysis.
Chapter 4 Decision Analysis.
1 1 Slide Decision Analysis n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected.
Decision Analysis A method for determining optimal strategies when faced with several decision alternatives and an uncertain pattern of future events.
Part 3 Probabilistic Decision Models
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Business 260: Managerial Decision Analysis
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
Operations Management Decision-Making Tools Module A
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
Decision Analysis Chapter 3
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
Module 5 Part 2: Decision Theory
“ The one word that makes a good manager – decisiveness.”
Chapter 3 Decision Analysis.
Decision Theory Decision theory problems are characterized by the following: 1.A list of alternatives. 2.A list of possible future states of nature. 3.Payoffs.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Chapter 9 - Decision Analysis - Part I
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Data Analysis and Decision Making (Albrigth, Winston and Zappe)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Decision Analysis Anderson, Sweeney and Williams Chapter 4 Read: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and appendix 4.1.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Chapter 12 Decision Analysis. Components of Decision Making (D.M.) F Decision alternatives - for managers to choose from. F States of nature - that may.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
DECISION THEORY & DECISION TREE
Chapter Twenty McGraw-Hill/Irwin
Welcome to MM305 Unit 4 Seminar Larry Musolino
Chapter 19 Decision Making
Decision Analysis Chapter 15.
Operations Management
John Loucks St. Edward’s University . SLIDES . BY.
MNG221- Management Science –
Chapter 13 Decision Analysis
Presentation transcript:

Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity Analysis n Decision Analysis with Sample Information n Computing Branch Probabilities

Problem Formulation n A decision problem is characterized by decision alternatives, states of nature, and resulting payoffs. n The decision alternatives are the different possible strategies the decision maker can employ. n The states of nature refer to future events, not under the control of the decision maker, which may occur. States of nature should be defined so that they are mutually exclusive and collectively exhaustive.

Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature is a payoff. n A table showing payoffs for all combinations of decision alternatives and states of nature is a payoff table. n Payoffs can be expressed in terms of profit, cost, time, distance or any other appropriate measure.

Decision Trees n A decision tree is a chronological representation of the decision problem. n Each decision tree has two types of nodes; round nodes correspond to the states of nature while square nodes correspond to the decision alternatives. n The branches leaving each round node represent the different states of nature while the branches leaving each square node represent the different decision alternatives. n At the end of each limb of a tree are the payoffs attained from the series of branches making up that limb.

Decision Tree Example

Decision Making without Probabilities n Three commonly used criteria for decision making when probability information regarding the likelihood of the states of nature is unavailable are: the optimistic approach the optimistic approach the conservative approach the conservative approach the minimax regret approach. the minimax regret approach.

Optimistic Approach n The optimistic approach would be used by an optimistic decision maker. n The decision with the largest possible payoff is chosen. n If the payoff table was in terms of costs, the decision with the lowest cost would be chosen.

Conservative Approach n The conservative approach would be used by a conservative decision maker. n For each decision the minimum payoff is listed and then the decision corresponding to the maximum of these minimum payoffs is selected. (Hence, the minimum possible payoff is maximized.) n If the payoff was in terms of costs, the maximum costs would be determined for each decision and then the decision corresponding to the minimum of these maximum costs is selected. (Hence, the maximum possible cost is minimized.)

Minimax Regret Approach n The minimax regret approach requires the construction of a regret table or an opportunity loss table. n This is done by calculating for each state of nature the difference between each payoff and the largest payoff for that state of nature. n Then, using this regret table, the maximum regret for each possible decision is listed. n The decision chosen is the one corresponding to the minimum of the maximum regrets.

Example Consider the following problem with three decision alternatives and three states of nature with the following payoff table representing profits: States of Nature States of Nature s 1 s 2 s 3 s 1 s 2 s 3 d d Decisions d Decisions d d d

Example: Optimistic Approach An optimistic decision maker would use the optimistic (maximax) approach. We choose the decision that has the largest single value in the payoff table. Maximum Maximum Decision Payoff Decision Payoff d 1 4 d 1 4 d 2 3 d 2 3 d 3 5 d 3 5 Maximaxpayoff Maximax decision

Example: Conservative Approach A conservative decision maker would use the conservative (maximin) approach. List the minimum payoff for each decision. Choose the decision with the maximum of these minimum payoffs. Minimum Minimum Decision Payoff Decision Payoff d 1 -2 d 1 -2 d 2 -1 d 2 -1 d 3 -3 d 3 -3 Maximindecision Maximinpayoff

For the minimax regret approach, first compute a regret table by subtracting each payoff in a column from the largest payoff in that column. In this example, in the first column subtract 4, 0, and 1 from 4; etc. The resulting regret table is: s 1 s 2 s 3 s 1 s 2 s 3 d d d d d d Example: Minimax Regret Approach

For each decision list the maximum regret. Choose the decision with the minimum of these values. Maximum Maximum Decision Regret Decision Regret d 1 1 d 1 1 d 2 4 d 2 4 d 3 3 d 3 3 Example: Minimax Regret Approach Minimaxdecision Minimaxregret

Decision Making with Probabilities n Expected Value Approach If probabilistic information regarding the states of nature is available, one may use the expected value (EV) approach. If probabilistic information regarding the states of nature is available, one may use the expected value (EV) approach. Here the expected return for each decision is calculated by summing the products of the payoff under each state of nature and the probability of the respective state of nature occurring. Here the expected return for each decision is calculated by summing the products of the payoff under each state of nature and the probability of the respective state of nature occurring. The decision yielding the best expected return is chosen. The decision yielding the best expected return is chosen.

n The expected value of a decision alternative is the sum of weighted payoffs for the decision alternative. n The expected value (EV) of decision alternative d i is defined as: where: N = the number of states of nature P ( s j ) = the probability of state of nature s j P ( s j ) = the probability of state of nature s j V ij = the payoff corresponding to decision alternative d i and state of nature s j V ij = the payoff corresponding to decision alternative d i and state of nature s j Expected Value of a Decision Alternative

Example: Burger Prince Burger Prince Restaurant is considering opening a new restaurant on Main Street. It has three different models, each with a different seating capacity. Burger Prince estimates that the average number of customers per hour will be 80, 100, or 120. The payoff table for the three models is on the next slide.

Payoff Table Average Number of Customers Per Hour Average Number of Customers Per Hour s 1 = 80 s 2 = 100 s 3 = 120 s 1 = 80 s 2 = 100 s 3 = 120 Model A $10,000 $15,000 $14,000 Model A $10,000 $15,000 $14,000 Model B $ 8,000 $18,000 $12,000 Model B $ 8,000 $18,000 $12,000 Model C $ 6,000 $16,000 $21,000 Model C $ 6,000 $16,000 $21,000

Expected Value Approach Calculate the expected value for each decision. The decision tree on the next slide can assist in this calculation. Here d 1, d 2, d 3 represent the decision alternatives of models A, B, C, and s 1, s 2, s 3 represent the states of nature of 80, 100, and 120.

Decision Tree d1d1d1d1 d2d2d2d2 d3d3d3d3 s1s1s1s1 s1s1s1s1 s1s1s1s1 s2s2s2s2 s3s3s3s3 s2s2s2s2 s2s2s2s2 s3s3s3s3 s3s3s3s3 Payoffs 10,000 15,000 14,000 8,000 18,000 12,000 6,000 16,000 21,

Expected Value for Each Decision Choose the model with largest EV, Model C. 33 d1d1d1d1 d2d2d2d2 d3d3d3d3 EMV =.4(10,000) +.2(15,000) +.4(14,000) = $12,600 = $12,600 EMV =.4(8,000) +.2(18,000) +.4(12,000) = $11,600 = $11,600 EMV =.4(6,000) +.2(16,000) +.4(21,000) = $14,000 = $14,000 Model A Model B Model C

Expected Value of Perfect Information n Frequently information is available which can improve the probability estimates for the states of nature. n The expected value of perfect information (EVPI) is the increase in the expected profit that would result if one knew with certainty which state of nature would occur. n The EVPI provides an upper bound on the expected value of any sample or survey information.

Expected Value of Perfect Information n EVPI Calculation Step 1: Step 1: Determine the optimal return corresponding to each state of nature. Determine the optimal return corresponding to each state of nature. Step 2: Step 2: Compute the expected value of these optimal returns. Compute the expected value of these optimal returns. Step 3: Step 3: Subtract the EV of the optimal decision from the amount determined in step (2). Subtract the EV of the optimal decision from the amount determined in step (2).

Calculate the expected value for the optimum payoff for each state of nature and subtract the EV of the optimal decision. Calculate the expected value for the optimum payoff for each state of nature and subtract the EV of the optimal decision. EVPI= EVwPI - EVwoPI EVPI= EVwPI - EVwoPI =.4(10,000) +.2(18,000) +.4(21,000) - 14,000 = $2,000 =.4(10,000) +.2(18,000) +.4(21,000) - 14,000 = $2,000 Expected Value of Perfect Information

Risk Analysis n Risk analysis helps the decision maker recognize the difference between: the expected value of a decision alternative, and the expected value of a decision alternative, and the payoff that might actually occur the payoff that might actually occur n The risk profile for a decision alternative shows the possible payoffs for the decision alternative along with their associated probabilities.

Risk Profile n Model C Decision Alternative Probability Profit ($thousands)

Sensitivity Analysis n Sensitivity analysis can be used to determine how changes to the following inputs affect the recommended decision alternative: probabilities for the states of nature probabilities for the states of nature values of the payoffs values of the payoffs n If a small change in the value of one of the inputs causes a change in the recommended decision alternative, extra effort and care should be taken in estimating the input value.