Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity B. Acke, M. Min, C. Dominik, B. Vandenbussche, B. Sibthorpe,

Slides:



Advertisements
Similar presentations
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Advertisements

Resonant Structures due to Planets Mark Wyatt UK Astronomy Technology Centre Royal Observatory Edinburgh.
Subaru/Gemini MIR Observations of Warm Debris Disks Hideaki Fujiwara (Subaru Telescope) 1 Collaborators: T. Onaka (U. Tokyo), D. Ishihara (Nagoya U.),
Signatures of Planets in Debris Disks A. Moro-Martin 1,2,3, S. Wolf 2, R. Malhotra 4 & G. Rieke 1 1. Steward Observatory (University of Arizona); 2. MPIA.
Spitzer Imaging of Kepler’s Supernova Remnant W.P. Blair, R. Sankrit, P.Ghavamian (JHU), K.S. Long (STScI), K. Borkowski & S.P. Reynolds (NCSU) Summary:
Is there evidence of planets in debris disks? Mark Wyatt Institute of Astronomy University of Cambridge La planètmania frappe les astronomes Kalas, P.
Debris Disk Science with GMT Inseok Song, University of Georgia for “Opening New Frontiers with the Giant Magellan Telescope” in Oct 2010 Zodiacal light:
Herschel study of the dust content of Cassiopeia A Ref: arxiv: v1 Oliver Krause PPT.
Image: ISAS/JAXA Christopher Stark University of Maryland NASA Goddard Space Flight Center Collisional Grooming: Including Collisions in (Prohibitively.
1 Debris Disk Studies with CCAT D. Dowell, J. Carpenter, H. Yorke 2005 October 11.
Infrared Astronomy The image above is an aitoff projection of the sky centered on the center of the Milky Way Galaxy (in the constellation Sagittarius).
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Study of Planet forming Systems Orbiting Intermediate-mass Stars Sweta Shah Ithaca College Advisor: Dr. Luke Keller In collaboration with the NASA Spitzer.
Spitzer Space Telescope Observations of the Fomalhaut Debris Disk Michael Werner, Karl Stapelfeldt, Chas Beichman (JPL); Kate Su, George Rieke, John Stansberry,
Circumstellar disk imaging with WFIRST: not just for wide field surveys any more... Tom Greene (NASA ARC) & WFIRST Coronagraph Team AAS / WFIRST Session.
+ Current efforts for modeling exozodiacal disks Jean-Charles Augereau & Olivier Absil LAOG, Grenoble, France & U. Liège, Belgium Barcelona, September.
« Debris » discs A crash course in numerical methods Philippe Thébault Paris Observatory/Stockholm Observatory.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Black Hole in M83 Topic: Black holes Concepts: multi-wavelength observations, black hole evolution Missions: Hubble, Chandra, Swift Coordinated by the.
21 Mars 2006Visions for infrared astronomy1 Protoplanetary worlds at the AU scale Jean Philippe Berger J. Monnier, R. Millan-Gabet, W. Traub, M. Benisty,
Infrared Telescopes 1.
A new class of warm debris disks? Rachel Smith, Institute for Astronomy; Mark Wyatt, Abstract.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
A Systematic Search and Characterization of Dusty Debris Disks M. McElwain, B. Zuckerman (UCLA) Joseph H. Rhee, & I. Song (Gemini Obs.) Photo Credit: T.
L. Matrà 1,2, B. Merín 1, C. Alves de Oliveira 1, N. Huélamo 3, Á. Kóspál 4, N. L.J. Cox 5, Á. Ribas 1,3, E. Puga 1, R. Vavrek 1, P. Royer 5, T. Prusti.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Is there evidence of planets in debris disks? Mark Wyatt Institute of Astronomy University of Cambridge La planètmania frappe les astronomes Kalas, P.
Debris Belts Around Vega 0 Topic: Exoplanets Concepts: Infrared observations, debris disks, exoplanet detection, planetary systems Missions: Spitzer, Herschel.
Coronagraphy and Debris Disk Imaging Karl Stapelfeldt JPL/Caltech and KITP.
The JCMT Debris Disk Legacy Survey: the (long) Calm before the Storm Brenda Matthews Herzberg Institute of Astrophysics.
Discoveries in Planetary Sciencehttp://dps.aas.org/education/dpsdisc/ The First Images of Exoplanets New images show planets orbiting bright young nearby.
Planets in Debris Disks Renu Malhotra University of Arizona Planet-Debris co-evolution Where can debris exist? Cases: Solar system, upsilon Andromedae,
Infrared Signatures of Planetary Systems Amaya Moro-Martin Department of Astrophysical Sciences, Princeton University.
Modeling Planetary Systems Around Sun-like Stars Paper: Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like Stars,
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
The PSI Planet-building Code: Multi-zone, Multi-use S. J. Weidenschilling PSI Retreat August 20, 2007.
Thessaloniki, Oct 3rd 2009 Cool dusty galaxies: the impact of the Herschel mission Michael Rowan-Robinson Imperial College London.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Astronomy 405 Solar System and ISM Lecture 14 Comets February 15, 2013.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
 SPIRE/PACS guaranteed time programme.  Parallel Mode Observations at 100, 160, 250, 350 and 500µm simultaneously.  Each.
Spitzer Surveys of IR Excesses of WDs Y.-H. Chu 1, R.A. Gruendl 1, J. Bilikova 1, A. Riddle 1, K. Su 2 1 Univ. of Illinois, 2 Univ. of Arizona.
2/6/2016 DCH-1 JWST/MIRI Space Telescope Science Institute The Infrared Sky: Background Considerations for JWST Dean C. Hines & Christine Chen MIRI Instrument.
Searching for extra-solar planets in Infrared J. Serena Kim Steward Observatory, Univ. of Arizona In collaboration with FEPS Spitzer legacy team (
Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,
Ge/Ay133 Can we study extrasolar Kuiper Belts?  Pic, A5V star AU Mic, M1Ve star.
Submillimeter Observations of Debris Disks Wayne Holland UK Astronomy Technology Centre, Royal Observatory Edinburgh With Jane Greaves, Mark Wyatt, Bill.
Debris Disks - LBTI Phil Hinz University of Arizona.
Theoretical difficulties with standard models Mark Wyatt Institute of Astronomy, University of Cambridge.
Kate Su, George Rieke, Karl Misselt, John Stansberry, Amaya Moro-Martin, David Trilling… etc. (U. of A) Karl Stapelfeldt, Michael Werner (NASA JPL) Mark.
Why is water interesting? Evidence of water in space Water in young disks Water in the terrestrial planet-forming zone Future prospects Water in young.
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
Observations of Bipolar planetary nebulae at 30 Micron Kentaro Asano (Univ.Tokyo) Takashi Miyata, Shigeyuki Sako, Takafumi Kamizuka, Tomohiko Nakamura,
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Terrestrial Planet Bombardment & Habitability Jane Greaves St Andrews, Scotland.
The Universe in the Infrared
Extended debris discs around nearby, Sun-like stars as a probe of disc-planet interactions Astronomical Society of Australia ASM 5th July 2016 Dr. Jonty.
Debris Disk Studies with CCAT
Chandra HETG Spectra of SN 1987A at 20 Years
Young planetary systems
Gas! Very few debris disks have detected gas, and it is generally only found around the youngest systems. So why should we consider gas here?
The Universe in the Infrared
Dynamical trapping (pile-up) of grains near the sublimation radius
Ge/Ay133 Can we study extrasolar Kuiper Belts?
NGC 1068 Torus Emission Turn-over
New Debris Disks With Spitzer Space Telescope
The origin of gas in debris disks
Plasma Poynting-Roberson Effect on Fluffy Dust Aggregate
Aigen Li1, Fangzhou Liu2, You Zhou3 1. University of Missouri
Presentation transcript:

Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity B. Acke, M. Min, C. Dominik, B. Vandenbussche, B. Sibthorpe, C. Waelkens, G. Olofsson, P. Degroote, K. Smolders, E. Pantin, M. J. Barlow, J. A. D. L. Blommaert, A. Brandeker, W. De Meester, W. R. F. Dent, K. Exter, J. Di Francesco, M. Fridlund, W. K. Gear, A. M. Glauser, J. S. Greaves, P. M. Harvey, Th. Henning, M. R. Hogerheijde, W. S. Holland, R. Huygen, R. J. Ivison, C. Jean, R. Liseau, D. A. Naylor, G. L. Pilbratt, E. T. Polehampton, S. Regibo, P. Royer, A. Sicilia- Aguiler, and B. M. Swinyard presented by Richard L. Pearson III University of Denver, AJC May 2, 2012

Outline Fomalhaut introduction Data collection & initial analysis – Geometric properties extrapolation Modeling – The dust – Best model fit (and process to get there) Discussion – Spectral energy distributions – Interior excess emission – Cometary debris – Mass loss 2 1/2

Fomalhaut Overview 3 1/3 1 According to Astronomical League’s Astronomical Pronunciation Guide 2 According to Earth & Sky’s Star Pronunciation Guide 3 According to Sandburg Center for Sky Awareness’ A Skywatcher’s Pronunciation Guide 22 h 57 m 39.1 s, -29° 37’ 20” Andromeda Pisces Pegasus Aquarius Pisces Austrinus Fomalhaut

Fomalhaut Overview 4 2/3 Obtained from HubbleSite, attributed to NASA, ESA, & A. Feild (STScI)

“Controversial” Fomalhaut 5 3/3 Aumann, H. H. 1985, PASP, 97, 885. Kalas, P., Graham, J. R., Chiang, E., et al. 2008, Science, 322, Boley, A. C., Payne, M. J., Corder, S., Dent, W., Ford, E. B., & Shabram, M. 2012, arXiv: v1.

Instrumentation Instrument Physical Resolution (AU) HERSCHEL PACS PACS SPIRE SPIRE SPIRE SPITZER MIPS246 ~ 46 MIPS7018 ~ 137 HUBBLE SPACE TELESCOPE Optical /2 Present Work (with Herschel) vs. Previous Work (with Spitzer)

Herschel Images Smooth features o Indicative of high dust replenishment rate by many collisions Unresolved central star o Excess “stellar” flux attributed to hot dust 1 Interior region not void o Space between center and belt shows (dust) emission o Dust present from in-fall from outer belt or out-fall from unresolved inner belt 7 2/2 1 Absil, O., Mennesson, B., Le Bouquin, J. B., et al. 2009, ApJ,

Geometric Properties from Herschel Images 8 1/2 a Kalas et al. 2005: Using HST images

Inconsistencies in Geometric Properties 9 2/2 Good Okay, except last Bad a Kalas et al. 2005: Using HST images

The Model: dust grain size distributions 10 1/4 1 assuming Poynting-Robertson drag of particles moving inward due to radiation slowing down momentum

The Model: collisional ring radii 11 2/4 Inner Ring Outer Ring

The Model: dust grain composition 12 3/4 1 proposed by Min et al. (2011), derived from solar abundances from Grevesse & Sauval (1998) These are averaged values throughout the disk, so, depending on disk location and hence, radiation dynamics, the particle size distributions are varied

The Model: fitting the model images 13 4/4 1 See Min, M. Dullemond, C. P., Dominik, C., de Koter, A. & Hovenier, J. W. 2009, A&A, 497, 155.

MCMax 14 1/1

Spectral Energy Distributions (SEDs) 15 1/2 interior excess

Interior Excess SED 16 2/2 1 Absil O., Mennesson, B. Le Bouquin, J. B., et al. An interformetric strudy of the Fomalhaut inner debris disk. I. Near-infrared detection of hot dust with VLTI/VINCI. 2009, ApJ, 704, 150.

Interior Excess Emission 17 2/2 1 From Panagia & Felli (1975)

Cometary Debris “grains that absorb and emit like small grains, but scatter like large particles” – Based on scattered light & thermal IR images – i.e. fluffy aggregates – e.g. cometary dust (like in our solar system) Most of the light scattered is not into our line of sight, providing apparently low scattering cross sections They do exclude very large compact grains, as these grains do not have the thermal properties needed to explain the far-IR images and SED 18 1/3 1 From Panagia & Felli (1975)

Comet Mass Loss 19 2/3

Comet Population 20 3/3

Conclusion Open up discussion of free-free emission in interior, diffuse region High-mass in blow-out particles, evidence of extreme activity Dust particles are fluffy aggregates similar to cometary particles in our own solar system 21