A U.S.-Japan Workshop on the Tropical Tropopause Layer Ground Based Observations 1. Observations of Meteorological & Constituents Fields Fumio Hasebe, Hokkaido University f-hasebe@ees.hokudai.ac.jp Atmospheric Observations Radiosondes Ozone Observations Electrochemical Concentration Cell Ozonesonde Water Vapor Observations Thin Film Capacitance Relative Humidity Sensors Chilled-Mirror Frostpoint Hygrometer Lyman-a Hygrometer Meteorological Interpretation Recent Progress Summary October 16, 2012
Atmospheric Observations Global Analysis of Meteorological Field Hagedorn (2007); http://www.ecmwf.int/newsevents/training/meteorological_presentations/MET_PR.html
Atmospheric Observations Radiosonde Observations http://www.ecmwf.int/research/era/Monitoring/STREAM1/Observations/Coverage/Temp/00.html
Radiosonde PTU + Wind Measurements Meisei RS06G
Ozonesonde Electrochemical Concentration Cell (ECC) Chemical Reactions in the KI Solution Cathode Cell: Introduce outside air with a suction pump 2 KI + O3 + H2O 2 KOH + I2 + O2 I2 + 2 e- 2 I - Anode Cell: Whole Cell: 3 I - I3- + 2 e- 3 I - + I2 I3- + 2 I- Fuel cell using ozone I_2: iodine I^-: iodide I_3^-: tri-iodide O3 2 e- e.g., Komhyr et al. (1995)
Ozonesonde Electrochemical Concentration Cell (ECC) Onboard Measurements Electric current between electrodes: i mA Pumped air temperature: Tc K Laboratory Measurements Prior to Launch Time for the pump to suck 100 ml: t sec Electrochemical Concentration Cell (ECC)
Water Vapor Observations Humidity Sensors of Operational Radiosondes Thin Film Capacitance Relative Humidity Sensors Hydrophilic Polymer Layer as a Dielectric of a Capacitor Capacitance is Proportional to Water Amount Captured at the Polymer Structure Ambient Water Concentration Limitations in Cold Environment Low Sensitivity Phase Lag Miloshevich et al. (2009) Dual RS92/CFH sounding at night. Black: measured RS92 profile Red: after phase lag correction Purple: CFH; forced freezing event as the gap at 2.5 km Dashed: Ice saturation
Water Vapor Observations Equilibrium Phase Transformation A relationship between the equilibrium pressure p and temperature T of the two-phase system キッテル, p.280-282 基礎物理学演習I, p.252-253, 351
Water Vapor Observations Clausius-Clapeyron Equation Goff-Gratch Equation
Water Vapor Sonde Chilled-Mirror Frostpoint Hygrometers Onboard Measurements Frostpoint temperature: Tfr K Cryogenic Cooling System NOAA Frostpoint Hygrometer (FPH) University of Colorado Frostpoint Hygrometer (CFH) Peltier Cooling System Snow White Hygrometer (SW) FineDew (under development; See poster of Sugidachi et al.) RS80 ECC CFH SW 13 January 2006 Biak, Indonesia 2006/1/13 Biak 01130007.JPG
Water Vapor Sonde Cryogenic Frostpoint Hygrometer (CFH) Onboard Measurements Frostpoint temperature: Tfr K Principle Maintain constant frost on a mirror monitored by its reflectivity Heating by electric current against cryogenic cooling PID feedback control Accuracy ~ 4 to 10% Voemel et al. (2007) 2006/1/13 01130014.JPG, 01130017.JPG
Water Vapor Sonde Raw data Interpolation to isentropes Smoothing of Tf(p) to reduce noise Estimation of confidence interval DTf(p) using fluctuations around mean profile Ascent Descent NOAA/FPH CU/CFH Interpolation to isentropes The law of propagation of errors; c(q), Dc(q) BI032の上昇速度:360-380K付近で3.5m/s程度、下降速度:6.4m/s 左下図のTauの値は 250hPa以下:2. 250-150hPa:3. 150-120hPa:6. 120-80hPa:12. 80hPa以上:8.秒(prg21bC) Compensation for the phase delay Response time for the frost on the mirror t=6~12s
Water Vapor Sonde Fluorescent Advanced Stratospheric Hygrometer for Balloon (FLASH-B) Onboard Measurements Intensity of fluorescent light: Background Physics H2O + hn (Lyman-a; 121.6 nm) OH* hn (310 nm) Lyman-α(121.6nm) Photomultiplier Yushkov et al.
Launching Operation Student Practices of Upper Air Sounding
Meteorological Interpretation http://weather.is.kochi-u.ac.jp 2008/01/11 00UT Hasebe et al. (2012) ACPD Covered by S midlatitude air mass. Intrusion from N midlatitudes ~360K Warm/dry layer (356~364K; 15.4 ~ 16.1km) ‘Cold trap’ dehydration for a few days before arrival at Biak 350~354 K (13.1~15.2 km) Supersaturation (< 25%) Cirrus ‘Cobald’ BSRblue Max 12.8 (351K) Lidar: Ice Crystal (Dp ~ 40%)
<Valve control cycle> <Valve control cycle> Recent Progress Shimizu and Hasebe (2010) Tungsten Temperature Sonde Ultra Thin Tungsten Wire (10 mm f) Short Response Time (40 ms at 30 km) High Vertical Resolution (< 1 m) Small Radiation Correction (< 0.5 K) Balloon-Borne CO2 Sonde Non-Dispersed IR Absorption (l = 4.3 mm / 4.0 mm) Shimizu et al. (2012) <Valve control cycle> (one cycle 160 sec.) <Valve control cycle> (one cycle 160 sec.) ~ GPS radio Sonde Meisei RS-06G Pressure ~ ~ GPS radio Sonde Meisei RS-06G Pressure ~ 400 Humidity 400 Humidity MHz (A) 370 ppm std. gas GPS MHz (A) 370 ppm std. gas GPS Data Data Valves Control board Valves (B) Ambient air 370 ppm standard gas Control Control board (B) Ambient air A 370 ppm standard gas Control A Sensor Data CO2 Sensor Data CO2 (C) 400 ppm std. gas B (C) 400 ppm std. gas Ambient air B Lamp Detector Ambient air Lamp Detector 400 ppm standard gas C (B) Ambient air 400 ppm standard gas C (B) Ambient air Paper Filter Paper Filter (A) 370 ppm std. gas (A) 370 ppm std. gas Filter Filter (B) Ambient air (B) Ambient air
Summary Radiosonde observations of TTL Relatively easy-to-use and cost-efficient research tool High-resolution data available Long-term continuation possible Lots of features waiting for meteorological interpretation Provide correlative data to satellite/aircraft observations Data quality improving, target species increasing Collaboration required for wide spatial coverage Stimulation of research activities in developing countries Key science questions to be accessed by ground-based observations How the stratospheric water is determined How such extreme super saturation realized How tropospheric short-lived species enter stratosphere