Andreas Jankowiak Institut für Kernphysik Johannes Gutenberg – Universität Mainz A Electron-Nucleon-Collider at the HESR of the FAIR Facility:

Slides:



Advertisements
Similar presentations
The Electron Nucleon Collider a possible future upgrade to FAIR F. Maas Helmholtz Institute Mainz NuPECC town meeting May 31 - June 2, 2010 CSIC, Madrid.
Advertisements

Mitglied der Helmholtz-Gemeinschaft Beam Cooling at HESR in the FAIR Project 12 th September 2011 Dieter Prasuhn.
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
Application of cooling methods at NICA project G.Trubnikov JINR, Dubna.
1 LHeC Considerations for a Lepton Hadron Collider Option for the LHC F. Willeke, BNL The 4th Electron Ion Collider Workshop Hampton University,
Intensity Limits and Beam Performances in the High-Energy Storage Ring
Luminosity Prospects of LHeC, a Lepton Proton Collider in the LHC Tunnel DESY Colloquium May F. Willeke, DESY.
ALPHA Storage Ring Indiana University Xiaoying Pang.
Thomas Roser RHIC Open Planning Meeting December 3-4, 2003 RHIC II machine plans Electron cooling at RHIC Luminosity upgrade parameters.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Toward a Test Facility for an ERL Circulator Ring Based e-Cooler MEIC Electron Cooler Test Facility Planning Retreat January 31, 2012.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
June 14th 2005 Accelerator Division Overview of ALBA D. Einfeld Vacuum Workshop Barcelona, 12 th -13 th September 2005 General 10 th September 2005.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Polarized Proton Acceleration and Collisions Spin dynamics and Siberian Snakes Polarized proton acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
1 Studies of electron cooling at DESY K. Balewski, R. Brinkmann, Ya. Derbenev, Yu. Martirosyan, K. Flöttmann, P. Wesolowski DESY M. Gentner, D. Husmann,
ERHIC with Self-Polarizing Electron Ring V.Ptitsyn, J.Kewisch, B.Parker, S.Peggs, D.Trbojevic, BNL, USA D.E.Berkaev, I.A.Koop, A.V.Otboev, Yu.M.Shatunov,
ERHIC design status V.Ptitsyn for the eRHIC design team.
PHYSICAL PROJECT OF BOOSTER FOR NICA ACCELERATOR COMPLEX Alexey Tuzikov, Nikolay Agapov, Andrey Butenko, Alexey Eliseev, Viktor Karpinsky, Hamlet Khodzhibagiyan,
1 BINP Tau-Charm Project 3 February 2010, KEK, Tsukuba E.Levichev For the BINP C-Tau team.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
NICA start-up scenario + questions of instabilities A.Sidorin For NiCA team NICA Machine Advisory Committee at JINR (Dubna) October 19-20, 2015.
Polarization in ELIC Yaroslav Derbenev Center for Advanced Study of Accelerators Jefferson Laboratory EIC Collaboiration Meeting, January 10-12, 2010 Stony.
F. Willeke, Snowmass Luminosity Limitations of e-p Colliders Extrapolation from HERA Experience Examples for IR Layout LINAC-Ring Limitations HERA.
1 NICA Project Report of The Group I S.L.Bogomolov, A.V.Butenko, A.V.Efremov, E.D.Donets, I.N.Meshkov, V.A.Mikhailov, A.O.Sidorin, A.V.Smirnov, Round Table.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Beam Physics Issue in BEPCII Commisionning Xu Gang Accelerator physics group.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Robert R. Wilson Prize Talk John Peoples April APS Meeting: February 14,
1 RHIC II – Ion Operation Wolfram Fischer RHIC II Workshop, BNL – Working Group: Equation of State 27 April 2005.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
BINP tau charm plans and other projects in Turkey/China A. Bogomyagkov BINP SB RAS, Novosibirsk.
Status of HESR 18th March Gießen Dieter Prasuhn.
Calculation of Beam Equilibrium and Luminosities for
Ion Collider Ring: Design and Polarization
Simulation of Luminosity Variation
Large Booster and Collider Ring
Acceleration of Polarized Protons and Deuterons at HESR/FAIR
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
BINP Tau-Charm Project
eRHIC with Self-Polarizing Electron Ring
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
JLEIC Collaboration Meeting Spring 2017
Physics Design on Injector I
Update of lattice design for CEPC main ring
Low Energy Electron-Ion Collision
HESR for SPARC 25th November FAIR MAC Dieter Prasuhn.
Polarized Positrons in JLEIC
Injection design of CEPC
JLEIC Reaching 140 GeV CM Energy: Concept and Luminosity Estimate
Update on ERL Cooler Design Studies
JLEIC 200 GeV Ion Injector Chain and Bunch Formation
MEIC New Baseline: Luminosity Performance and Upgrade Path
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
JLEIC Main Parameters with Strong Electron Cooling
MEIC New Baseline: Part 7
MEIC New Baseline: Performance and Accelerator R&D
HE-JLEIC: Do We Have a Baseline?
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC Alternative Design Part III
Optimization of JLEIC Integrated Luminosity Without On-Energy Cooling*
JLEIC Ion Beam Formation options for 200 GeV
Presentation transcript:

Andreas Jankowiak Institut für Kernphysik Johannes Gutenberg – Universität Mainz A Electron-Nucleon-Collider at the HESR of the FAIR Facility: K. Aulenbacher, R. Heine, A.J., W. Hillert, O. Boldt, A. Lehrach, T. Weis, C. Montag, D. Barber, P. Schnizer Common EIC / ENC Workshop GSI – Darmstadt 18 May 2009

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz A “simple” idea: electron – nucleon collisions using the HESR Luminosity considerations for a electron – “low energy” nucleon collider Some comments on the necessary ingredients First parameter sets for e-p collisions at s 1/2 =14GeV (3.3GeV e - on 15GeV p) Deuterons Conclusion The menu

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz A “simple” idea: (i) HESR SIS18 70MeV p-Linac HESR: anti proton storage ring 1.5 – 15 GeV/c (max. 50Tm) L=576m, e-Cooling, stoch. cooling PANDA fixed target experiment p SIS100 SIS300

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz A “simple” idea: (ii) P e-e- pol. e - -inj. idea emerged 08/2008 L > /cm 2 s s 1/2 > 10GeV (3.3GeV e -  15GeV p) polarised e - ( > 80%) ↔ polarised p / d ( > 80%) (transversal + longitudinal) using the PANDA detector as much as possible Common effort of German Universities (Bonn, Mainz, Dortmund) plus collaboration with Research Centres FZJ, DESY, GSI,... HESR pRing eRing PANDA 8MV eCool

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz Luminosity Considerations (i) f coll : collision-freq., f 0 : revolution-freq., h p : number of bunches, n e,p : particles / bunch, r e,P : beam radii at IP,  IP : beta IP,  p : proton beam emittance F HGR : hour glass reduction factor, F HGR ~ 80% for l p =  IP luminosity of an e-p collider, round beams, same radius B: bunching-factor = rf / l p (rf wave-length / bunch-length), L p : circumference  0 : electric constant = L p / l p · n p space charge (Laslett) tune shift: It turns out:  Q sc is the prominent limiting parameter !  Q sc < 0.1 !

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz Luminosity Considerations (ii) rewrite luminosity formula using expression for  Q sc : (for the HESR case) ~ 1 ~ 0.1 ~ 0.8 the only free parameters: bunch number h p and electron bunch population n e Take care of other constrains, most parameters depend on each other.

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz beam-beam parameter electrons (< 0.05) / protons (< 0.01) Luminosity Considerations (iii) beam instabilities in pRing and eRing (depending on bunch current, bunch number, emittances momentum spread,...) synchrotron radiation issues beam cooling in pRing IP geometry: radius / opening angle (n-sigma values)

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz Linac eSynchrotron eRing HESR (15GeV/c,  = 16) The HESR as pRing (i) n p =5.4 · 10 10, l p =0.3m,  p =1.2 · m rad (  Q sc =0.05) BetaCool calculations done by Andreas Lehrach / FZJ shows that these values could be reached (talk Friday morning) cooler-parameter: 8.2MV, 0 – 3 A, B=0.2T (magnetised cooling), T T =1eV, T L =0.5meV, B r /B < 10 -5, 24m effective cooler length h p =100, N p =5.4 · f 0 =519.46kHz SIS18 70MeV p linac P 1.4GeV/c (only three spin resonances) tune jump Quads, partial snake eCool, 8.2MV full snake

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz To get the desired bunched beam of polarised protons with h p =100, l b =0.3m, n p =5.4 · 10 10,  p =1.3 · mrad, P p > 15GeV/c into the HESR needs: a polarised p source at the new 70MeV proton linac spin manipulation in the SIS18 (tune jump quads, partial snake) proton transfer line + injection counter clockwise to the HESR spin manipulation in the HESR (full snake in back straight) accumulation of > 50 SIS18 shots at injection in the HESR (complicated process with bunching – bunch to bucket transfer – bunch merging) complicated rf-gymnastic at 15GeV/c in the HESR adiabatic bunching in h=100 under strong electron cooling  without eCool necessary cavity voltage would exceeds MV ! a powerful 8.2MV, 1 – 3 A magnetised electron cooler The HESR as pRing (ii) already included in the PAX proposal (A. Lehrach, talk Friday morning)

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz HESR electron cooler 4.5MV: FAIR Phase B (PANDA high resolution mode) Upgrade path to 8.3MV: beyond (PANDA high luminosity mode) 24m cooling straight, B r /B l ~ only 0 – 1A electron current HV generation: Pelletron (6bar SF 6, 94m 3 ) 150 pages Still lots to do ! The electron cooler (i) The Svedberg Laboratory Mai m Due to lack of funding, Uppsala will not longer substantially contribute to the cooler! Group will be closed soon.

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz The electron cooler (ii) 2MV COSY cooler under development as prototype for HESR eCool (FZ-Jülich and Budker Institute / Novosibirsk) First demonstration and measurements of high energy magnetised cooling ! Scalable? 2MV  4.5MV (75 modules)  8.2MV (137 modules) HRJRG funded (450k€/3a, J. Dietrich/FZJ, Budker, Dubna, TU Dortmund) 2.5Mio€ + 1Mio€ funding for realisation High voltage module 60kV, integrated solenoids, powered by gas-turbine 0.03 – 2MV, 0 - 3A (34 modules) HV-column: B = 0.05 T toroids + cooling: B = 0.2 T New approach for high voltage generation

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz The eRing (i) bunch intensity: n e =2.3 ·  19mA (in eRing with L e ~ L p =576m) h e = h p = 100  I tot =1.9A P SR (HESR: R=30m) Power density: 5kW/m Synchrotron-Radiation: polarized e - -gun pulsed linac (~100MeV), full energy injector synchrotron “flexible” adjustment of emittance ? impedance budget and multi-bunch feedback system high synchrotron radiation load as in B-factories Linac eSynchrotron eRing (3.3GeV) e-e- W. Hillert, O. Boldt (ELSA / Bonn) Th. Weis (DELTA / Dortmund)

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz The eRing (ii) 24to dipole, 4.3to quadrupole both nc eRing dipole: ca. 0.4m×0.25m and 1.6to for 4m length Apparently it is a good idea to built the eRing inside the HESR tunnel ! But don't forget: - cavities - spin-manipulation - injection/extraction - feedback -...

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz The eRing (iii) electron spin must be vertical in arcs, otherwise  depol < 20min (D. Barbers / DESY, talk today) sc solenoids to turn spin from vertical to in-plane, directing inside or outside last bending in horizontal plane turns spin to longitudinal direction forward/backward sc-solenoid dipole  conditions to be fulfilled due to spin dynamics requirements:  a = n+½ (a= ) and  spin =  a  spin =90°) in our case: 1)  =6467  E=3.305GeV,  · a=7.5 and  =12.00° 2)  =5605  E=2.864GeV,  · a=6.5 and  =13.85° (-44% SR-power) Each arc consists of 15(13) 12.00°(13.85°) bending systems (DBA or some FODO derivative) The last/first used for spin manipulation ! Polarisation Preservation in eRing:

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz IR design (i) 30m PANDA

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz IR design (ii) e-e- p split-coil-quads or large aperture sc-quads head on collision aperture requirements: 20  electrons, 12  protons  IP =0.3m, r IP =0.19mm beam separation at 2.88m (no parasitic collisions) with small dipole field over IP ? no direct or indirect SR photons in detector combined quadrupole-dipole for beam separation (9kW SR power, E C =8keV) First guess: (C. Montag, BNL) special designed SR-absorber

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz HESR / 15GeV peRing / 3.3GeV L [circumference, m] R [bending radius, m]3025  norm /  geo [mm mrad ]2 / 0.13  IP [m]0.3 r IP [mm] /  IP [mrad]0.197 / 0.63 l [bunch length, m]0.3< 0.1 n [particle / bunch ]5.423 I b [bunch current, mA] h [bunches / ring]100 I [total current, A] P SR [sr-Power, kW] / [kW/m]795 / 5 f coll [collision freq., MHz] coll [bunch distance, m]  Q sc 0.05  [beam beam parameter] Luminosität [1/(cm 2 s)] (inc. 80% hour glass red.) 1.1 · P [polarisation, %]80% needs 8.2MV eCool 12 and 20 sigma acceptance requirements, physics requirements to be demonstrated (under FAIR/GSI constrains) First parameter sets (i)

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz HESR / 15GeV peRing / 3.3GeV L [circumference, m] R [bending radius, m]3025  norm /  geo [mm mrad ]2 / 0.13  IP [m] 0.1 r IP [mm] /  IP [mrad]0.111 / 1.12 l [bunch length, m]0.1< 0.1 n [particle / bunch ]3.623 I b [bunch current, mA] h [bunches / ring] 200 I [total current, A] P SR [sr-Power, kW] / [kW/m]1590 / 10 f coll [collision freq., MHz] coll [bunch distance, m]  Q sc 0.1  [beam beam parameter] Luminosität [1/(cm 2 s)] (inc. 80% hour glass red.) 4.4 · P [polarisation, %]80% First parameter sets (ii) needs 8.2MV eCool IR + detector design bunching process B-factory design x 2 possible under collision? polarisation preservation? polarisation?

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz e-e- Deuterons (i) Linac eSynchrotron eRing SIS18 70MeV sc linac P 3.8GeV/c (NO spin resonances) eCool, 4.1MV only partial snake possible + rf-dipole necessary tune jump Quads, partial snake (15GeV/c,  = 8) UNILAC d HESR polarized deuteron source (D. Eversheim, talk today) with interface at UNILAC ~ 1 ~ 0.1 ~ 0.8 A = 2, Z = 1,  d = ½  p  L = 0.5 · L p (per nucleon) BetaCool simulations (A. Lehrach):  d = 1/3  p possible no longitudinal d spin

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz Deuterons (ii): a more technical problem For p=15GeV/c: protons: deuterons:  p =  d = With fixed eRing length L e =577.13m and h p =h d =200:  length difference for ion ring: 3.35m ! For fixed repetition rate of eRing: By choice of unequal harmonic numbers for proton and deuteron operation one can stay with constant ring lengths of ion and electron ring (and with the rf-systems of both rings) and have collision with the maximum momentum of 15 GeV/c.

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz HESR / 15GeV deRing / 3.3GeV L [circumference, m] R [bending radius, m]3025  norm /  geo [mm mrad ] < 2 / 0.13  IP [m] 0.1 r IP [mm] /  IP [mrad]0.111 / 1.12 l [bunch length, m]0.1< 0.1 n [particle / bunch ] I b [bunch current, mA] h [bunches / ring] I [total current, A] P SR [sr-Power, kW] / [kW/m]1375 / 8.8 f coll [collision freq., MHz] coll [bunch distance, m]  Q sc 0.1  [beam beam parameter] Luminosität [1/(cm 2 s)] (inc. 80% hour glass red.) 1.9 · P [polarisation, %]80% Deuterons (iii) parameter set needs only 4.1MV eCool collision of unequal bunch numbers

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz HESR / 15GeV peRing / 3.3GeV L [circumference, m] R [bending radius, m]3025  norm /  geo [mm mrad ] < 2 / 0.13  IP [m] 0.1 r IP [mm] /  IP [mrad]0.111 / 1.12 l [bunch length, m]0.1< 0.1 n [particle / bunch ]3.623 I b [bunch current, mA]319.1 h [bunches / ring] 172 I [total current, A] P SR [sr-Power, kW] / [kW/m]1375 / 8.8 f coll [collision freq., MHz] coll [bunch distance, m]  Q sc 0.1  [beam beam parameter] Luminosität [1/(cm 2 s)] (inc. 80% hour glass red.) 3.8 · P [polarisation, %]80% Deuterons (iv) parameter set for protons

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz Helmholtz Institut Mainz (HIM) Cooperation between Mainz University ↔ GSI (Helmholtz Centre) Application in March 2009 Review in April 2009 (“strongly recommends the foundation”) Final decision on Start: Summer 2009 Section: Accelerator Physics and Integrated Detectors (ACID) Resources 2 x PostDoc, 3 x PhD ( 1 x PostDoc, 1 x PhD) Tasks IR design and detector integration, bunch formation in HESR, beam – beam  In collaboration with participating institutes: 1 st order design report (2011), Technical Design Report (2012/2013) eCool HESR/ENC: solenoid channel, beam diagnostics, upgrade 4.5MV  8.2MV sc cw demonstrator linac section for super heavy element production

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz Conclusion ENC is very interesting extension to FAIR Accelerator working group is established (Mainz, Bonn, Dortmund, FZJ, DESY, GSI,...) Needs fulltime manpower ! Needs more collaboration ! Main topics to deal with - spin and beam dynamics in eRing - beam dynamics in HESR bunch formation process under eCool - IR design with PANDA and spin rotators (in close collaboration with detector physicists) - beam-beam effects in case (“low energy” protons, short e - bunches) - eCool at 8.2MV and ampere currents - system integration Deuteron mode as start version (4.1MV eCool sufficient)

Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg – University Mainz