Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch10. Silicon-on-Insulator Devices.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

1 PIDS 7/1/01 18 July 2001 Work In Progress – Not for Publication P. Zeitzoff Contributors: J. Hutchby, P. Fang, G. Bourianoff, J. Chung, Y. Hokari, J.
Silicon on Insulator Advanced Electronic Devices Karthik Swaminathan.
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch9. Memory Devices.
CONTENTS 1. History 2. FET Definition 3. FET operation
EE130/230A Discussion 12 Peng Zheng 1. Velocity Saturation Velocity saturation limits I Dsat in sub-micron MOSFETS Simple model: E sat is the electric.
Metal Oxide Semiconductor Field Effect Transistors
ECE 6466 “IC Engineering” Dr. Wanda Wosik
COMPACT MODEL FOR LONG-CHANNEL SYMMETRIC DOPED DG COMPACT MODEL FOR LONG-CHANNEL SYMMETRIC DOPED DG Antonio Cerdeira 1, Oana Moldovan 2, Benjamín Iñiguez.
Lateral Asymmetric Channel (LAC) Transistors
Gain medium Incoherent Light Coherent Light ECE 663 Transistor/switch/amplifier – a 3 terminal device Source Drain Gate Valve Artery Vein Emitter Collector.
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch5. CMOS Performance Factors.
SOI BiCMOS  an Emerging Mixed-Signal Technology Platform
CMPE 118 MECHATRONICS Digital I/O Transistors and Mosfets.
Spring 2007EE130 Lecture 43, Slide 1 Lecture #43 OUTLINE Short-channel MOSFET (reprise) SOI technology Reading: Finish Chapter 19.2.
Analytical 2D Modeling of Sub-100 nm MOSFETs Using Conformal Mapping Techniques Benjamin Iñiguez Universitat Rovira i Virgili (URV), Tarragona, E-43001,
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
EE105 Fall 2007Lecture 27, Slide 1Prof. Liu, UC Berkeley Lecture 27 ANNOUNCEMENTS Regular office hours will end on Monday 12/10 Special office hours will.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
UNIVERSITY OF CALIFORNIA, IRVINE
On May 4, 2011, Intel Corporation announced what it called the most radical shift in semiconductor technology in 50 years. A new 3-dimensional transistor.
Chapter 1 Introduction and Historical Perspective
Flash Memory EECS 277A Fall 2008 Jesse Liang #
Basic Bipolar Process Description Bipolar Process Flow –Vertical npn –Lateral pnp –JFET –Prepared by Randy Geiger, September 2001.
EE130/230A Discussion 13 Peng Zheng 1. Why New Transistor Structures? Off-state leakage (I OFF ) must be suppressed as L g is scaled down – allows for.
MOS-AK, San Francisco, Dec. 13, The HiSIM Family of Compact-Models for Integrated Devices H. J. Mattausch, N. Sadachika, M. Miyake, H. Kikuchihara,
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Technologies for integrating high- mobility compound semiconductors on silicon for advanced CMOS VLSI Han Yu ELEC5070.
Intro to Mechatronics 18 February 2005 Student Lecture: Transistors
Field Effect Transistors Next to the bipolar device that has been studied thus far the Field Effect Transistor is very common in electronic circuitry,
Page 1 Hannes Luyken CPR ND N e v e r s t o p t h i n k i n g. ULIS 2003 Ultimate Integration of Silicon T. Schulz, C. Pacha, R. J. Luyken, M. Städele,
Determining the Optimal Process Technology for Performance- Constrained Circuits Michael Boyer & Sudeep Ghosh ECE 563: Introduction to VLSI December 5.
CMOS Scaling Two motivations to scale down
Advanced Process Integration
Basic MOSFET I-V characteristic(1/3) High circuit operation speed  large I ON small Subthreshold Slope (SS) Low power consumption  small I OFF (Silicon-on-insulator.
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
E. Sicard - ultra deep submicron Ultra-Deep submicron technology Etienne Sicard Insa
Szu-Wei Huang, C-V Lab, GIEE of NTU 1 黃 思 維 F Graduate Institute of Electronics Engineering National Taiwan University Advanced Multi-Gate Technologies.
MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6.
Overview and Device Physics
Text Book: Silicon VLSI Technology Fundamentals, Practice and Modeling Authors: J. D. Plummer, M. D. Deal, and P. B. Griffin Class: ECE 6466 “IC Engineering”
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
PROJECT GUIDE GROUP MEMBERS Dr.B.GOPI,B.E.M.E.Ph.D P.MENAKA G.NIVEDHA M.PAVITHRA M.POORNIMA G.PRIYA 1.
Special Issues on Nanodevices1 Special Topics in Nanodevices 3 rd Lecture: Nanowire MOSFETs Byung-Gook Park.
The threshold voltage for long channel transistors V T0 is defined as: Eindhoven MOS-AK Meeting April 4, 2008 Eindhoven MOS-AK Meeting April 4, 2008 Accurate.
Chapter 12 : Field – Effect Transistors 12-1 NMOS and PMOS transistors 12-2 Load-line analysis of a simple NMOS amplifier 12-3 Small –signal equivalent.
MOSFET Structure p-Si n+ L Source Gate Drain Field Oxide Gate Oxide
Master in Microelectronics technology and Manufacturing Management E. Sicard - introducting 90nm 4. Introducing 90nm technology.
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch4.2 Threshold Voltage.
Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1μm MOSFET’s with Epitaxial and δ-Doped Channels A. Asenov and S. Saini, IEEE.
A Class presentation for VLSI course by : Maryam Homayouni
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
UTB SOI for LER/RDF EECS Min Hee Cho. Outline  Introduction  LER (Line Edge Roughness)  RDF (Random Dopant Fluctuation)  Variation  Solution – UTB.
2002/06/11 Rational You p.1 Non-Classical CMOS Dr. Rational You IEK/ITRI 2002/07/11 Source:
Fig. 4 from Material and device engineering in fully depleted silicon-on-insulator transistors to realize a steep subthreshold swing using negative capacitance.
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
Lecture 1: Introduction DEE Spring
INTRODUCTION: MD. SHAFIQUL ISLAM ROLL: REGI:
IGBT - Insulated Gate Bipolar Transistor
Bipolar Processes Description
Reading: Finish Chapter 19.2
FIELD EFFECT TRANSISTOR
الکترونیک دیجیتال تمرین
Sung June Kim Semiconductor Device Fundamentals Introduction Sung June Kim
Junctionless Device.
Your Text Your Text Your Text Your Text Your Text Your Text
A Fully Physical Model for Leakage Distribution under Process Variations in Nanoscale Double-Gate CMOS Liu Cao Lin Li.
Beyond Si MOSFETs Part IV.
Presentation transcript:

Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch10. Silicon-on-Insulator Devices

Advance Nano Device Lab. 1 Ch10.1 SOI CMOS

Advance Nano Device Lab. SOI CMOS 2

Advance Nano Device Lab. Partially Depleted SOI MOSFETs 3

Advance Nano Device Lab. Fully Depleted SOI MOSFETs 4

Advance Nano Device Lab. Fully Depleted SOI MOSFETs 5

Advance Nano Device Lab. Fully Depleted SOI MOSFETs 6

Advance Nano Device Lab. 7 Ch10.2 Thin-Silicon SOI Bipolar

Advance Nano Device Lab. Thin-Silicon SOI Bipolar 8

Advance Nano Device Lab. Thin-Silicon SOI Bipolar 9

Advance Nano Device Lab. Fully Depleted Collector Mode 10

Advance Nano Device Lab. Fully Depleted Collector Mode 11

Advance Nano Device Lab. Partially Depleted Collector Mode 12

Advance Nano Device Lab. Accumulation Collector Mode 13

Advance Nano Device Lab. Accumulation Collector Mode 14

Advance Nano Device Lab. 15 Ch10.3 Double-Gate MOSFETs

Advance Nano Device Lab. An Analytic Drain Current Model for Symmetric DG MOSFETs 16

Advance Nano Device Lab. An Analytic Drain Current Model for Symmetric DG MOSFETs 17

Advance Nano Device Lab. An Analytic Drain Current Model for Symmetric DG MOSFETs 18

Advance Nano Device Lab. An Analytic Drain Current Model for Symmetric DG MOSFETs 19

Advance Nano Device Lab. An Analytic Drain Current Model for Symmetric DG MOSFETs 20

Advance Nano Device Lab. The Scale Length of Double-Gate MOSFETs 21

Advance Nano Device Lab. Fabrication Requirements and Challenges of DG MOSFETs 22

Advance Nano Device Lab. Multiple-Gate MOSFETs 23

Advance Nano Device Lab. Multiple-Gate MOSFETs 24