Masayuki Matsuzaki Fukuoka Univ. of Education Phys. Rev. D 82 016005 (2010)

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

RIKEN, March 2006: Mean field theories and beyond Peter Ring RIKEN, March 20, 2006 Technical University Munich RIKEN-06 Beyond Relativistic.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
1 Nuclear Binding and QCD ( with G. Chanfray) Magda Ericson, IPNL, Lyon SCADRON70 Lisbon February 2008.
Functional renormalization – concepts and prospects.
Functional renormalization group equation for strongly correlated fermions.
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER.
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
System and definitions In harmonic trap (ideal): er.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
July, 2008 Summer School on Dense Matter and HI Dubna 1 Relativistic BCS-BEC Crossover at Quark Level Pengfei Zhuang Physics Department, Tsinghua University,
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Some Topics on Chiral Transition and Color Superconductivity Teiji Kunihiro (YITP) HIM Nov. 4-5, 2005 APCTP, Pohang.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
History of superconductivity
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Magnetic aspects of QCD and compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction and motivation II.Chiral symmetry and spin.
IRGAC 2006 COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars? Vivian de la Incera Western Illinois University.
Vivian de la Incera University of Texas at El Paso DENSE QUARK MATTER IN A MAGNETIC FIELD CSQCD II Peking University, Beijing May 20-24, 2009.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,

I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
Bogoliubov-de Gennes Study of Trapped Fermi Gases Han Pu Rice University (INT, Seattle, 4/14/2011) Leslie Baksmaty Hong Lu Lei Jiang Randy Hulet Carlos.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
Higgs Bosons in Condensed Matter Muir Morrison Ph 199 5/23/14.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Specific heat of a fermionic atomic cloud in the bulk and in traps in the bulk and in traps Aurel Bulgac, Joaquin E. Drut, Piotr Magierski University of.
第9届QCD相变和重离子碰撞物理研讨会,杭州
“QCD Kondo effect” KH, K. Itakura, S. Ozaki, S. Yasui,
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Precursory Phenomena in Chiral Transition and Color Superconductivity
mesons as probes to explore the chiral symmetry in nuclear matter
Handout 9 : The Weak Interaction and V-A
in Dense and Hot Quark Matter
On Superfluid Properties of Asymmetric Dilute Fermi Systems
Color Superconductivity: CFL and 2SC phases
Color Superconductivity in dense quark matter
Fermions in the unitary regime at finite temperatures
Relativistic extended chiral mean field model for finite nuclei
PHY 752 Solid State Physics Superconductivity (Chap. 18 in GGGPP)
M. Matsuzaki, RIKEN "Mean-field theories and beyond", Mar. 21, 2006
PHY 752 Solid State Physics Superconductivity (Chap. 18 in GGGPP)
China-Japan Nuclear Physics 2006
Chengfu Mu, Peking University
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Aspects of Color Superconductivity in 2-flavor Quark Matter
Compact stars in the QCD phase diagram II,2009
A possible approach to the CEP location
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Masayuki Matsuzaki Fukuoka Univ. of Education Phys. Rev. D (2010)

 Finite μ I =μ u -μ d with μ B ∝μ u +μ d =0 : artificial but suitable for lattice QCD and expected to give some insight into finite μ B, accommodate pion condensation ( Campbell et al., PRD, 1975 )

Sigma condensation Pi condensation

 Crossover: Meson condensation at low |μ I |  Cooper pair condensation at high |μ I | (Son and Stephanov, PRL, 2001)  Spatial extension of the composite  momentum-dep. interaction ・ nuclear superfluidity (relativistic) : Tanigawa and M.M., PTP, 1999 ・ color superconductivity : M.M., PRD 2000

Present study: adopt linear sigma model as a q-q interaction Effects of μ I are well studied ( He, Jin, and Zhuang, PRD, 2005 )

Linear sigma model with μ I Stationary points of the mean field

Decomposition to mean field + fluctuation only for “radial” direction --- NG mode  assures current (“angular mom.”) conservation Solving the K-G equations then inserting them into …

--- non-local self energy. the EOM of the quark propagator The one-body (Fock) approximation gives

the Gor’kov equation Expand in terms of the plain waves with Fourier transformation and isospin decomposition lead to and pick up residues. Finally we obtain the matrix equation for the Bogoliubov amplitudes A – D at each k:

k-indep. meson condensation k-dep. “gap” for the quark --- function of all A(k’) –D(k’)

Parameters

u d μIμI

d u

pairing boson k-dep. with

2 peaks : boson --- k ~ 0, Cooper pair --- k ~ k F forms Fermi surface at|μ I |> 0.24 GeV while q-q bound state at|μ I |< 0.24 GeV

Coherence length --- spatial size of the pair

 Pion condensation at|μ I |>m π (μ B =0)  Linear sigma model (in isospin rotating f rame) as the q-q interaction  Gor’kov equation for quark propagator  boson at k ~ 0 and Cooper pair at k ~ k F coexist

Back up

PresentColor superconductor

gapless

d u

ignore “Coriolis” interaction

higher solution pure u quark aside from k ~ 0 bosonic contribution

lower solution s.c. calhigher solution s.c. cal

nuclear superfluidity

E. Nakano and T. Tatsumi

q