Status of the Laser System Sparc Laser group A. Ghigo, G. Gatti, P.Musumeci, M. Petrarca, C. Vicario. C. Vicario SPARC review committee LNF 14/06/2005.

Slides:



Advertisements
Similar presentations
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
Advertisements

Strecher, compressor and time structure manipulation
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
CTF3 Laser Status Massimo Petrarca CLIC January
Philippe Hering October 30, 2007 Drive Laser Commissioning Results and Plans 1 Drive Laser Commissioning results and plans Philippe.
1 Injector Lasers Overview Sasha Gilevich, SLAC April 29, 2004 Drive Laser Specifications Challenges System Description Laser Procurement R&D Effort UV.
Ultrafast Spectroscopy
Bill White Drive Laser April 16, Drive Laser Commissioning Experience Reminder of requirements on Drive Laser.
Yb Fiber Laser System Xiangyu Zhou 19. Feb
Sasha GilevichFacilities Advisory Committee April Injector Drive Laser Update Facilities Advisory Committee Meeting April.
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
-Care CERN 2-5 December 2008 Giancarlo Gatti Phin activities at LNF.
Time-Bandwidth Products getting the average power of ultrafast DPSS lasers from hundreds of mW to tens of Watts by Dr. Thomas Ruchti CERN, April 2006 SESAM.
Recent developments for the LCLS injector Feng Zhou SLAC Other contributors: Brachmann, Decker, Ding, Emma, Gilevich, Huang, Iverson, Loos, Raubenheimer,
Laser pulse shaping for high- brightness photoinjector Carlo Vicario for SPARC collaboration.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
30. Nov I.Will, G. Klemz, Max Born Institute: Optical sampling system Optical sampling system for detailed measurement of the longitudinal pulse.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
DS3-DS4 Joint 1 st Task Meeting, Saclay 16 th -17 th May 2005 Matter under extremes conditions Femtosecond Laser Servers Laboratoire Francis Perrin SPAM.
The UCLA PEGASUS Plane-Wave Transformer Photoinjector G. Travish, G. Andonian, P. Frigola, S. Reiche, J. Rosenzweig, and S. Telfer UCLA Department of Physics.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
C. Vicario LCLS ICW SLAC Oct. 9-11, THE DRIVE LASER: EXPERIENCE AT SPARC Carlo Vicario for SPARC collaboration.
Lasers and RF-Timing Franz X. Kaertner
W.S. Graves ASAC Review Sept 18-19, 2003 R&D at Bates William S. Graves MIT-Bates Laboratory Presentation to MIT X-ray laser Accelerator Science Advisory.
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Phto-injector laser chain NEWS Massimo Petrarca & Marta Divall.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Brian Sheehy Laser and Timing.
Oscillator stability & ASE Reduction
Laser System Upgrade Overview
Laser system for ILC diagnostics Sudhir Dixit: The John Adams Institute (Oxford)
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Bill White Commissioning October 9, 2006 Drive-Laser Commissioning Status and Plans Requirements Where do we stand today?
Short pulse oscillator
W.S. Graves 2002 Berlin CSR workshop 1 Microbunching and CSR experiments at BNL’s Source Development Lab William S. Graves ICFA CSR Workshop Berlin, Jan.,
Workshop for advanced THz and Compton X-ray generation
Drive Laser Introduction ‘ir’ master oscillator power amplifier chain (MOPA) uses standard chirped pulse amplification scheme (CPA) third harmonic generation.
February 17-18, 2010 R&D ERL Brian Sheehy R&D ERL Laser and laser light transport Brian Sheehy February 17-18, 2010 Laser and Laser Light Transport.
Operated by the Southeastern Universities Research Association for the U.S. Dept. of Energy Thomas Jefferson National Accelerator Facility FEL Power Achieved.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
RF low level control & synchronization A. Gallo, M. Bellaveglia, L. Cacciotti SPARC review committee – ENEA Frascati – 16/11/2005.
Nd:YAG Solid Laser Xiangyu Zhou 20. Nov Yb fiber laser system on the ground Menlo 1030nm oscillator Grating stretcher (Transmission) SOA pulse.
R. Losito CERN-AB-ATBCARE Steering committee 13/09/06 PHIN R. Losito CERN – AB/ATB 13/09/2006.
LASER SYSTEM STATUS G.Gatti, A. Ghigo, C.Vicario, P.Musumeci, M. Petrarca, S. Cialdi, D. Filippetto REVIEW COMMITTEE 16/11/05.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Status of the SPARC laser and “dazzler” experiments
Summary of SPARC first-phase operations
Drive-Laser Commissioning Status and Plans
Laser System Upgrade Overview
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
ILC/ATF-2 Laser System Sudhir Dixit (JAI, Oxford)
Timing and synchronization at SPARC
Nd:YAG Solid Laser 3-2 / A-1 on the ground
DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER
Principle of Mode Locking
Kansas Light Source Laser System J. R. Macdonald Laboratory
LASER SYSTEM STATUS G.Gatti , A. Ghigo , C.Vicario , P.Musumeci ,
Drive Laser Facility Layout Drive Laser Architecture Technical Issues
Drive Laser Commissioning Status
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Injector Drive Laser Update
Injector Drive Laser Technical Status
Presentation transcript:

Status of the Laser System Sparc Laser group A. Ghigo, G. Gatti, P.Musumeci, M. Petrarca, C. Vicario. C. Vicario SPARC review committee LNF 14/06/2005

sa Outlines  Report on the Dazzler experiment at BNL  Laser system description  Installation and tests of the SPARC laser system system  Conclusions C. Vicario SPARC review committee LNF 14/06/2005

Impulso gaussiano senza filtraggio Dazzler

Dazzler Filter for Square Pulse x 10 4 Wavelength (nm) Spectral intensity Blue UV IR

Spettro UV ottimizzato Conversione di armonica è molto sensibile a amp phase & amp modulation in IR. Modulazione 1% in IR >10% in UV FWHM UV è 1.94 nm Spettro modulazione minima 7% Blue edge 13%, red 17% del FWHM Il dazzler sembra non poter compensare queste mod così fini x 10 4 Wavelength (nm) Spectral intensity

Misure di cross-correlazione 100 fs IR ~10 ps UV BBO crystal 200 fs blue Power meter Delayed Misure su impulsi di 20 ps mostrano una perfetta sovrapposizione tra traccia di x-correlazione e spettro

10 ps cross-correlazione maggior peso degli ordini di fase superiori

Laser Laser parameters : Oscillator: 860mW, 790nm, 10nm BW Regen: 14.5mJ pump, 30 roundtrips, 1.45mJ output 2-pass amp: 269mJ pump, 34mJ output Compressor: 15.5mJ output Conversion: 6.2mJ input, 315uJ output, 5% efficiency. Input limitato da danneggiamento ottiche. Dazzler resolution: 0.3nm, ma nelle condizioni sperimentali è possibile correggere dettagli ~1.5nm

SDL layout 1.6 cell gun with copper cathode 70 MeV Bend 5 MeV Bend Dump RF zero phase screen UndulatorsLinac tanks 30 mJ, 10 nm Ti:Sapphire laser Triplet MeV zero phase linac

e-beam measurement Q=70 pC

e-beam temporal distribution Q=70 pC dopo ottimizzazione filtro

e-beam temporal distribution Q=300 pC

Misura distribuzione temporale e spettrale

UV streak camera e cross- correlation

Si sono effettuate misure preliminari di pC, 60 MeV L’emittanza trasversa diminuisce da 2 a 1.5 [μrad] passando da impulso gaussiano a quello flat top. Le misure di emittanza slice non sono consistenti. (>2.3 μrad). Le misure evidenziavano limiti di risoluzione dei BPM. Cambiamento lattice?? Servirebbe una analisi sistematica dei risultati.

5 ft 5050 Nd:YAG pump laser Harmoni cs 14 ft Laser top view 5 ft C. Vicario SPARC review committee LNF 14/06/2005

Nd:YAG pump laser Synchrolock Mira control HIDRA Laser/optical table (5 x 14 ft minimum) UV Stretcher Elevated support/stand (optional) Harmonic s SDG Evolution EVO controller EVO chiller Mira chiller Verdi controller Laser side view C. Vicario SPARC review committee LNF 14/06/2005

Picture of the oscillator and the pump C. Vicario SPARC review committee LNF 14/06/2005

Oscillator pump laser Main features  CW operation, multimode  5 W power  Frequency doubled YFL at nm  Diode pumped solid state laser (DPSS). Diodes are in the controller. Fiber coupled to the scillator laser head. C. Vicario SPARC review committee LNF 14/06/2005

Oscillator overview C. Vicario SPARC review committee LNF 14/06/2005 Main features  CW operation, at 79+1/3 Mhz  Output power 800 mW  Pulse duration >130 fs fwhm and bandwidth < 12 nm.  Tunability between nm.  Synchronization to an external generator or laser.

Synchronization measurements We tested the oscillator rep. rate with an external sinusoidal oscillator. At the coherent facility the synchronization jitter of two oscillators was measured. Synchrolock Off Synchrolock On C. Vicario SPARC review committee LNF 14/06/2005

Oscillator spectral and time domains measurements C. Vicario SPARC review committee LNF 14/06/2005 The spectrum and the pulse length are in the specs.

We first stretch the pulse in time so to lower its peak power. Then, we amplify it up to saturation, and finally we recompress the pulse width. t Short pulse oscillator t Dispersive delay line t stretch = J sat /I damage Ti:Al 2 O 3 ~ 200 ps tt Solid state amplifier Saturation is reached safely t Peak power increase proportional to t stretch > 1000 t Inverse delay line CPA CPA: principle of operation C. Vicario SPARC review committee LNF 14/06/2005

Hidra Amplifier Mira Seed Verdi VerdiPump Evolution Pump fs pulse, low energy <ps pulse, high energy Ti:Sa amplifier system: components CW Continuum Pump 2 ns pulses high energy C. Vicario SPARC review committee LNF 14/06/2005

Chirped pulse amplifier layout Multipass amplifier Stretcher Regen amplifier Pumps Compressor Seed C. Vicario SPARC review committee LNF 14/06/2005

Pictures of the amplifier Stretcher CompressorRegen. amp. Multipas amps C. Vicario SPARC review committee LNF 14/06/2005

The regenerative amplifier is a z-cavity oscillator with an input and an output gates From stretcher: SEED Output Ejector Pockel cell and reflective polarizer Ejector off Ejector on Injector Pockel cell and waveplete C. Vicario SPARC review committee LNF 14/06/2005

Amplifier’s pump lasers Regenerative pump laser  Diode-pumped, intra-cavity doubled, 1 kHz Q-switched, Nd:YLF lasers.  The laser is compact, reliable and it is fully controlled by the computer.  The output power is 15 W. Multipass pump laser  Lamp pump, amplified Nd:YAG. The amplified pulse is frequency doubled to obtain 532 nm.  The pulse energy achieves 720 mJ, with a length of 8 ns and a rep. rate of 10Hz C. Vicario SPARC review committee LNF 14/06/2005

Summary of the IR specs ParametersRequirementsMeasured Wavelength (output of Hidra-50)800 nm Repetition rate10 Hz Pulse energy at laser output (Hidra-50) > 50mJ50 mJ Pulse length< 120 fs FWHM104 fs FWHM Temporal pulse shape Gaussian~ Gaussian Beam divergence< 1.5 diffraction limitM 2 x : 1.9 M 2 y : 1.6 Contrast ratioPre-pulse: > 1000:1 Post-pulse: >100:1 Pre-pulse: > 3000:1 Post-pulse: >300:1 Energy jitter (in UV)< 5% rms IR beam profile~ TEMoo C. Vicario SPARC review committee LNF 14/06/2005

Amplified pulse measurements The autocorrelation profile (duration of 153 fs) indicates the pulse length is about 106 fs. IR profile at full energy: 55 mJ per pulse

UV stretcher The UV stretcher is used to change the UV pulse length between 0.5 ps to 12 ps. The measured efficiency is about 40%. Harmoni cs C. Vicario SPARC review committee LNF 14/06/2005

Energy 800 nm: < 5%

Third harmonic generator Two thin BBO crystals are used to generate the UV light. The fundamental and the second harmonic are mixed to produce the UV pulse. C. Vicario SPARC review committee LNF 14/06/2005

Second harmonic measurements C. Vicario SPARC review committee LNF 14/06/2005

Third harmonic measurements M 2 x : 2.7 M 2 y : 1.9 Beam profile at full energy Spectrum at full energy C. Vicario SPARC review committee LNF 14/06/2005

Summary of the UV specs ParametersRequirementsMeasured Wavelength nm266 nm Repetition rate10 Hz Pulse energy after harmonics unitN/A3.5 mJ Pulse energy at laser output (after UV stretcher) > 2mJ1.4 mJ Pulse length (tunable) ps FWHMN/A Temporal pulse shape GaussianN/A UV Bandwidth>10nm1.2 nm UV beam profile~TEMooSee pictures (two passes stretcher) Beam divergence< 1.5 diffraction limitM 2 x : 7.6* M 2 y : 2.9* Energy stability (in UV)< 5% rms< 4.5 % RF Timing jitter< 500 fs<350 fs C. Vicario SPARC review committee LNF 14/06/2005

Conclusion