Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL 30. 01.2013.

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

Beam Halo Measurement using Diamond Sensor at ATF2 S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe, N. Fuster-Martínez,
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
Investigation of the properties of diamond radiation detectors
Slide 1 Diamonds in Flash Steve Schnetzer Rd42 Collaboration Meeting May 14.
Beam Loss Analysis Tool for the CTF3 PETS Tank M. Velasco, T. Lefevre, R. Scheidegger, M. Wood, J. Hebden, G. Simpson Northwestern University, Evanston,
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Kara Hoffman The University of Chicago Enrico Fermi Institute and the MuCool Collaboration May 14, 2004 A brief history and first results.
TOF at 10ps with SiGe BJT Amplifiers
experimental platform
Performances of a pixel ionization chamber to monitor a voxel scan hadron beam A.Boriano 3, F.Bourhaleb 2,3, R. Cirio 3, M. Donetti 2,3, F. Marchetto 3,
NA62 Gigatracker Working Group Meeting 2 February 2010 Massimiliano Fiorini CERN.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
IP-BPM NOV. BEAM TEST RESULTS Siwon Jang (KNU). 11cm Low-Q IP-BPM design  11cm Low-Q IP-BPM drawings of HFSS 100mm Sensor cavity Wave guide Antenna Designed.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
Fast Timing with Diamond Detectors Lianne Scruton.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
Laser Stripping and H 0 monitor systems 10/18/2011B.Cheymol, E. Bravin, U. Raich, F. Roncarolo BE/BI1.
CVD diamond detector as a beam monitor for a high intensity and high luminosity accelerator Kodai Matsuoka (Kyoto Univ.) for T2K muon monitor group.
Status of post-IP diamond sensor project for beam core and halo measurements S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe,
Hamburg University: Plans for SLHC Silicon Detector R&D Georg Steinbrück Wien Feb 20, 2008.
Beam diagnostics in the beamlines
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Diamond Sensor Diamond Sensor for Particle Detection Maria Hempel Beam Impact Meeting Geneva,
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Shan Liu, Philip Bambade, Sha Bai, Dou Wang, Illia Khvastunov ECFA, Hamburg, 29 May, 2013.
Electron Detection for Compton Polarimetry Michael McDonald Outline -Compton Effect -Polarimetry -Detectors -Diamond Results.
First results from silicon and diamond sensors K. Afanasiev 1, I. Emeliantchik 1, E. Kouznetsova 2, W. Lohmann 2, W. Lange 2 1 NC PHEP, Minsk 2 DESY Zeuthen.
Design and Detailed Plan for In Vacuum Diamond Sensor for PHIL and ATF2 S. Liu, P. Bambade, F. Bogard, P. Cornebise, I. Khvastnov, H. Monard, C. Sylvia.
P.W. Gorham et al.. TEST BEAM A SLAC Time relative to beam entry Antenna V/V rms Time relative to beam entry Antenna V/V rms close to shower maximumshower.
K. Matsuoka (Kyoto Univ.) for T2K muon monitor group
SIAM M. Despeisse / 29 th January Toward a Gigatracker Front-end - Performance of the NINO LCO and HCO Matthieu Despeisse F. Osmic, S. Tiuraniemi,
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
G. Ferioli, R. Jung - LHC-BI Review Workshop November 19&20 LHC Screen Profile Monitors G. Ferioli, R. Jung Introduction BTV LHC layout Monitor set-up.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
Philip Bambade Laboratoire de l’Accélérateur Linéaire
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
DaMon: a resonator to observe bunch charge/length and dark current. > Principle of detecting weakly charged bunches > Setup of resonator and electronics.
Albuquerque 1 Wolfgang Lohmann DESY On behalf of the FCAL collaboration Forward Region Instrumentation.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
Infrared Laser Test System Silicon Diode Testing 29 May 2007 Fadmar Osmić Contents: Setup modifications new amplifier (Agilent MSA-0886) new pulse generator.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
Update on works with SiPMs at Pisa Matteo Morrocchi.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
CdTe prototype detector testing Anja Schubert The University of Melbourne 9 May 2011 Updates.
CNS CVD Diamond S. Michimasa. Properties of diamond Extreme mechanical hardness and extreme high thermal conductivity Broad optical transparency in region.
C. Weiss 1, 2, G. Badurek 2, E. Berthoumieux 3, M. Calviani 1, E. Chiaveri 1, D. Dobos 1, E. Griesmayer 4,C. Guerrero 1,E. Jericha 2, F. Kaeppeler 5, H.
MICRO-STRIP METAL DETECTOR FOR BEAM DIAGNOSTICS PRINCIPLE OF OPERATION Passing through metal strips a beam of charged particles or synchrotron radiation.
Picosecond timing of high energy heavy ions with semiconductor detectors Vladimir Eremin* O. Kiselev**, I Eremin*, N. Egorov***, E.Verbitskaya* * Physical-Technical.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
ATF2: Accelerator Test facility A.Jeremie LAPP: A.Jeremie LAL: P.Bambade, Shan Liu, S.Wallon, F.Bogard, O.Blanco, P.Cornebise, I. Khvastunov, V. Kubytskyi.
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Nanometer stabilisation at ATF2 within FJPPL and FKPPL
Beam detectors performance during the Au+Au runs in HADES
Activities on straw tube simulation
A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I
ATF2 post-IP Diamond Sensor Status
BTF microbunching structure with Micro-Channel Plate PMT
Development of the muon monitor for the T2K experiment
Power pulsing of AFTER in magnetic field
FCPPL, Clermont-Ferrand , 8-10 April, 2014
大強度
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Pre-installation Tests of the LHCb Muon Chambers
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL

Contents ATF2 and Beam Halo Measurement Diamond Detector Characteristics Mad-X Simulation Results Diamond Detector PHIL Expected PHIL Electronics Setup Summary and Future Plan 2

ATF2 & Beam Halo Measurement Shintake Monitor Sensor 3 Motivations:  Beam halo transverse distribution unknown → investigate halo model  Probe Compton recoiled electron→ investigate the higher order contributions to the Compton process

Diamond Detector Characteristics 4 PHIL  ATF2  Property Diamond Silicon Density (g m -3 ) Band gap (eV) Resistivity (Ω cm) Breakdown voltage (V cm -1 ) Electron mobility (cm 3 V -1 s -1 ) Hole mobility (cm 3 V -1 s -1 ) Saturation elocity (μm ns -1 ) Dielectric constant Neutron transmutation cross-section(mb) Energy per e-h pair (eV) Atomic number Av.min.ionizing signal per 100 μm (e) > Large band-gap ⇒ low leakage current High breakdown field High mobility ⇒ fast charge collection Large thermal conductivity High binding energy ⇒ Radiation hardness ADVANTAGES Energy loss of an electron in diamond & silicon

Diamond Detector Characteristics Configurations: - Pads : mm 2 x 500  m - Strips & pixels - Membranes (  5  m) - Orthogonal/ Parallel orientation Types: - Poly crystalline diamond - Single crystalline diamond Diamond detectors Current Measurement 5 Charge created by 1MIP in diamond → 2.74 fC

Mad-X Simulation Results for Beam & Halo & Compton Sensor Total Number (in simulation) Total Number (in experiment) Min. ~ Max. Number/mm Sensor Charge signal/mm 2 Beam * *10 -6 C=1.6887μC Halo (δp/p 0 =0.01) * * C=31.236pC Halo (δp/p 0 =0.0008) * * C=61.376pC Compton *10 ~ 52 *1082.2fC ~ pC 6

Diamond Detector PHIL ATF2 in-vacuum 2x2mm single crystal CVD diamond sensor profile scanner -> test and diagnostic for PHIL Fixed (moveable) beam profile and halo monitor as diagnostic for PHIL: large area poly crystalline CVD sensor Test of fast remote readout (fast heliax coax cable + ASIC) with particles at end of beam line, using existing single crystal 4.5x4.5mm CVD diamond pad sensor PHIL Electron Beam Parameters (given by Hugues Monard) Charge: 10 pC-250 pC/bunch (1 bunch per RF pulse) ; Duration of Charge: 7 ps FWHM; Charge Stablility: < 2%; Maximum Energy: 3MeV; Minimum Dispersion: < 1%; Beam Size -> ? 7

Expected PHIL Charge created by 1MIP in diamond : 2.74 fC; PHIL: 10 pC-250 pC/bunch (1 bunch per RF pulse) Signal pulse length of diamond: t=1ns; Minimum charge obtained from PHIL (in case all the electrons hit on the diamond): Convert the charge into voltage: 8 Too Large!

Electronics Setup Cable Type LDF4-50A, HELIAX 1/2 " LDF1-50, HELIAX® 1/4 " Connector R185A ECO 7/16 1/2" Connector ECO 7/16 1/4" 4-channel Agilent 6000L Series 1 GHz analog bandwidth and up to 4 GSa/s sample rate 8 bit vertical resolution (extensible to 12 bits) Maximum input : 400 V pk BNC connector used PARISROC2 Photomultiplier Array Integrated in SiGe Read Out Chip 16 independent channels and each channel has a variable gain Charge dynamic range: 50 fC to 200 pC Shaper with variable shaping time (from 25 ns to 100 ns) Self triggering and ADC integrated Both charge and time data can be measured Agilent DSO6104L Fast Sampling Oscilloscope 9 Cable length: 25 m to 50 m (measured by Jean-Noel Cayla)

Summary and Future Plan  The charge obtained from PHIL (from 0.17μC to 4.25μC ) is very close to the charge created by the ATF2 beam (1.6887μC/mm 2 );  To calibrate the halo and Compton measurement results we will also need to use the diamond detector to measure the beam itself, with an attenuator; the beam intensity will also be measured by other existing instruments;  We can reduce the signal by changing the input beam density and changing the position of diamond detector (distance or angle relative to the beam) and also the signal can be attenuated by high bandwidth attenuator or the diamond bias voltage can be reduced;  Measure signals from diamond sensors using the PHIL beam and a set of fast Agilent 1 GHz bandwidth / 4 GHz sampling oscilloscopes;  Test diamond sensors using PARISROC II by reducing the signal; 10  Discuss the design of diamond based profile monitor for PHIL.