Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Laser Physics EAL 501 Lecture 6 Power & Frequency.
J. P. Reithmaier1,3, S. Höfling1, J. Seufert2, M. Fischer2, J
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Polarization Techniques for Interferometer Control Peter Beyersdorf National Astronomical Observatory of Japan LSC March 2002 Advanced Configurations LIGO-G Z.
Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann.
Towards a Laser System for Atom Interferometry Andrew Chew.
Optics of GW detectors Jo van den Brand
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
MSEG 667 Nanophotonics: Materials and Devices 4: Diffractive Optics Prof. Juejun (JJ) Hu
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Fundamental of Fiber Optics. Optical Fiber Total Internal Reflection.
Q09/2001 The GEO 600 Laser System LIGO-G Z V. Quetschke°, M. Kirchner°, I.Zawischa*, M. Brendel*, C. Fallnich*, S. Nagano +, B. Willke° +, K.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Towards dual recycling with the aid of time and frequency domain simulations M. Malec for the GEO 600 team Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut.
MODULATION AIDA ESMAEILIAN 1. MODULATION  Modulation: the process of converting digital data in electronic form to an optical signal that can be transmitted.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) Institut für Atom- und Molekülphysik Detector Characterization of GEO 600 during.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Stefan Hild 1Ilias WG1 meeting, June 2005 Title Beam clipping Problems in GEO 600 ?? Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
LSC 03/2005 LIGO-G Z S. Chelkowskicharacterization of squeezed states 1 Experimental characterization of frequency-dependent squeezed light Simon.
1 Large Aperture Dielectric Gratings for High Power LIGO Interferometry LSC/Virgo Meeting, Baton Rouge March 19-22, 2007 Optics Working Group Jerald A.
Lecture 5. Tunable Filters Δf defines as the frequency difference between the lowest- and the highest-frequency channels and  f as the spacing between.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Frequency Dependent Squeezing Roadmap toward 10dB
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
AIC: Activity report K.A. Strain MIT July 2007 G R.
Multiple interference Optics, Eugene Hecht, Chpt. 9.
Sensitive gas absorption coefficient measurements based on Q reduction in an optical cavity. 1) Pulsed laser ring-down time measurements 2) Chopped CW.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
§3 Basic Fibre Components
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
First DR FFT Results on Advanced LIGO Using Perfect and Imperfect Optics By Ken Ganezer, George Jennings, and Sam Wiley CSUDH LIGO-G Z by Ken.
Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED.
Highly efficient Raman fiber laser Collaborators: E. Bélanger M. Bernier B. Déry D. Faucher Réal Vallée.
Institute for Cosmic Ray Research Univ. of Tokyo Development of an RSE Interferometer Using the Third Harmonic Demodulation LIGO-G Z Osamu Miyakawa,
A. Freise1 Phase and alignment noise in grating interferometers Andreas Freise QND Meeting, Hannover
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto & Giancarlo Cella INFN- Pisa.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Interferometer configurations for Gravitational Wave Detectors
A look at interferometer topologies that use reflection gratings
Detuned Twin-Signal-Recycling
Quantum noise reduction using squeezed states in LIGO
Overview of quantum noise suppression techniques
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
GW related research activities in Hannover UNI/AEI
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Nanostructured Optics
Heterodyne Readout for Advanced LIGO
Homodyne or heterodyne Readout for Advanced LIGO?
Heterodyne Readout for Advanced LIGO
Complex Nanophotonics
Advanced Optical Sensing
Presentation transcript:

Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*, K. Danzmann Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), *Institut für Angewandte Physik, Universität Jena LIGO-G Z

Aspen, , Roman Schnabel 2 Is it possible to couple light to a cavity without transmission? 1 st Order Littrow Laser m=0 m=-1 2 nd Order Littrow Laser m=-2 m=-1 m=0 Laser

Aspen, , Roman Schnabel 3 Is it possible to couple light to a cavity without transmission? 1 st Order Littrow Laser m=0 m=-1 Deep grating structure for high diffraction efficiencies

Aspen, , Roman Schnabel 4 Is it possible to couple light to a cavity without transmission? 2 nd Order Littrow Laser m=-2 m=-1 m=0 Advantage: Cavity finesse is limited by specular reflectivity (>99.99% seems possible) Low diffraction efficiency Shallow structures Low scattering loss

Aspen, , Roman Schnabel 5 Coupler / 2 nd Order Littrow Grating equation: for d=1450 nm (grating period),  =1064 nm, |m|=2. Shallow grating (40 to 50nm) structure with HR stack on top  in   Suggested design values for coupling amplitudes:    = 99%,    = 1%,     as small as possible,    (0°)=98%, no transmission at all, low loss

Aspen, , Roman Schnabel 6 Coupler / 2 nd Order Littrow Grating equation: for d=1450 nm (grating period),  =1064 nm, |m|=2. Shallow grating (40 to 50nm) structure with HR stack on top  in   Measured (+measurement inferred) values for coupling amplitudes:    ≈ 99.4%,    ≈ 0.58%,    ≈ 0.005%,    (0°) ≈ 98.8%, Overall ≈ 0.04%

Aspen, , Roman Schnabel 7 Measured (+measurement inferred) values for coupling amplitudes:    ≈ 99.4%,    ≈ 0.58%,    ≈ 0.005%,    (0°) ≈ 98.8%, Overall ≈ 0.04% Coupler / 2 nd Order Littrow Grating equation: for d=1450 nm (grating period),  =1064 nm, |m|=2. Shallow grating (40 to 50nm) structure with HR stack on top  in   A 3-port coupler!

Aspen, , Roman Schnabel 8 Coupler / 2 nd Order Littrow Grating equation: for d=1450 nm (grating period),  =1064 nm, |m|=2.  in   From   >0,   >0 and time reversal consideration one can deduce   >0! What is the lowest   possible? Measured (+measurement inferred) values for coupling amplitudes:    ≈ 99.4%,    ≈ 0.58%,    ≈ 0.005%,    (0°) ≈ 98.8%, Overall ≈ 0.04% A 3-port coupler!

Aspen, , Roman Schnabel 9 FP-Cavity: Coupled 2 nd Order Littrow Cavity free spectral range Finesse: F=400 A. Bunkowski et al., Opt. Lett. 29, 2342, (2004)    ≈ 0.58%,   (0°)≈ 98.8%, Overall 0.04%

Aspen, , Roman Schnabel 10 Coupling Relations of the 2-Port (transmissive) Beamsplitter a1a1 a2a2 b1b1 b2b2 or a i,b i : complex field amplitudes

Aspen, , Roman Schnabel 11 Coupling Relations of the 3-Port (reflective) Beamsplitter and a1a1 a2a2 b1b1 b3b3 a3a3 b2b2  in  

Aspen, , Roman Schnabel 12 Coupling Relations of the 3-Port (reflective) Beamsplitter and a1a1 a2a2 b1b1 b3b3 a3a3 b2b2

Aspen, , Roman Schnabel 13 3-Port Coupled FP Cavity a 1 =1 c1c1 c3c3 c2c2

Aspen, , Roman Schnabel 14   =   min  c1c1 c3c3 c2c2   >   min  c1c1 c3c3 c2c2 3-Port Coupled FP Cavity a 1 =1 c1c1 c3c3 c2c2

Aspen, , Roman Schnabel 15 3-Port Coupled FP Cavity a 1 =1 c1c1 c3c3 c2c2 Gratings with minimum  2 provide a dark port (c 3 =0) for a tuned cavity and enables power recycling.

Aspen, , Roman Schnabel 16 Summary A low loss reflective coupler to a cavity of Finesse 400 has been demonstrated. Phase relations of the three-port coupler are understood. Our results show that low efficiency, 3- port gratings are very promissing for high power interferometers.

Aspen, , Roman Schnabel 17 All-reflective Grating IFO Proposed by R. Drever

Aspen, , Roman Schnabel 18 3-Port Coupled FP Cavity a 1 =1 c1c1 c3c3 c2c2