Validation of GEANT4 versus EGSnrc Yann PERROT LPC, CNRS/IN2P3

Slides:



Advertisements
Similar presentations
1 COMPARISON BETWEEN PLATO ISODOSE DISTRIBUTION OF A 192 IR SOURCE AND THOSE SIMULATED WITH GEANT4 TOOLKIT F. Foppiano 1, S. Agostinelli 1, S. Garelli.
Advertisements

Giorgio Russo National Research Council, Institute of Bioimaging and Molecular Imaging (IBFM) Fondazione Istituto San Raffaele G. Giglio di Cefalù Istituto.
Short-range, high-LET recoil tracks in CR-39 plastic nuclear track detector E. R. Benton 1, C. E. Johnson 1, J. DeWitt 1, N. Yasuda 2, and E. V. Benton.
Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
Experimental studies of low energy proton irradiation of thin vacuum deposited Aluminum layers T. Renger, M. Sznajder, U.R.M.E. Geppert Chart.
Ion Beam Analysis techniques:
Geant4 “Standard” Electromagnetic Physics Package Geant4 Standard EM group MC 2005 Chattanooga, Tennessee, USA April 2005.
Collimator Damage Adriana Bungau The University of Manchester Cockcroft Institute “All Hands Meeting”, January 2006.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Using FLUKA to study Radiation Fields in ERL Components Jason E. Andrews, University of Washington Vaclav Kostroun, Mentor.
Building clinical Monte Carlo code from Geant4, PENELOPE or EGSnrc Joao Seco 1, Christina Jarlskog 1, Hongyu Jiang 2 and Harald Paganetti 1 1 Francis H.
G4NAMU meeting March 6th, 2006 Validation Activities at SLAC of Relevance to Medical Users Koi, Tatsumi SLAC/SCCS.
Bruce Faddegon, UCSF Inder Daftari, UCSF Joseph Perl, SLAC
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
J. Tinslay 1, B. Faddegon 2, J. Perl 1 and M. Asai 1 (1) Stanford Linear Accelerator Center, Menlo Park, CA, (2) UC San Francisco, San Francisco, CA Verification.
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Low-energy EM group : validation of low energy EM models Geant Low Energy EM Physics working group January 2009 CERN.
Geant4 simulation of the attenuation properties of plastic shield for  - radionuclides employed in internal radiotherapy Domenico Lizio 1, Ernesto Amato.
G EANT 4 energy loss of protons, electrons and magnetic monopole M. Vladymyrov.
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
Photons e- e+ Bremsstrahlung Comton- scattered photon Pair production Photoelectric absorption Delta ray There are no analytical solutions to radiation.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Automated Electron Step Size Optimization in EGS5 Scott Wilderman Department of Nuclear Engineering and Radiological Sciences, University of Michigan.
M.G. Pia et al. Brachytherapy at IST Results from an atypical Comparison Project Stefano Agostinelli 1,2, Franca Foppiano 1, Stefania Garelli 1, Matteo.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Validation and TestEm series Michel Maire for the Standard EM group LAPP (Annecy) July 2006.
F. Foppiano, B. Mascialino, M. G. Pia, M. Piergentili Geant4 Simulation of an Accelerator Head for Intensity Modulated RadioTherapy Monte Carlo 2005 Topical.
Precision Analysis of Electron Energy Deposition in Detectors Simulated by Geant4 M. Bati č, S. Granato, G. Hoff, M.G. Pia, G. Weidenspointner 2012 NSS-MIC.
Department of Physics University of Oslo
Physics Modern Lab1 Electromagnetic interactions Energy loss due to collisions –An important fact: electron mass = 511 keV /c2, proton mass = 940.
Ye, Sung-Joon, Ph.D. Ove, Roger, M.D., Ph.D.; Shen, Sui, Ph.D.
Introduction Commercial implementations of the convolution/superposition (C/S) method make several approximations, which can lead to dose calculation inaccuracies.
IEEE NSS 2012 IEEE NSS 2007 Honolulu, HI Best Student Paper (A. Lechner) IEEE TNS April 2009 Same geometry, primary generator and energy deposition scoring.
Experimental studies of spatial distribution of neutron production around thick lead target irradiated by 0.9 GeV protons Antonín Krása&Vladimír Wagner.
Geant4 based simulation of radiotherapy in CUDA
Multiple Scattering (MSC) in Geant4 Timothy Carlisle Oxford.
Araki F. Ikegami T. and Ishidoya T.
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
Electrons Electrons lose energy primarily through ionization and radiation Bhabha (e+e-→e+e-) and Moller (e-e-→e-e-) scattering also contribute When the.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Improvement of the Monte Carlo Simulation Efficiency of a Proton Therapy Treatment Head Based on Proton Tracking Analysis and Geometry Simplifications.
Validation of EM Part of Geant4
N 0 primary photons generated N d primary photons detected Determination of the photon mass attenuation coefficients Check on ParentID( ) Energy value.
POLARIZATION MEASUREMENTS AND ABSOLUTE POLARIZATION VALUES EVOLUTION DURING PROTON BEAM ACCELERATION IN THE RHIC ACCELERATOR COMPLEX A.Zelenski, T.Roser,
P. Rodrigues, A. Trindade, L.Peralta, J. Varela GEANT4 Medical Applications at LIP GEANT4 Workshop, September – 4 October LIP – Lisbon.
Pedro Arce Introducción a GEANT4 1 GAMOS tutorial RadioTherapy Exercises Pedro Arce Dubois CIEMAT
Systematic limitations to luminosity determination in the LumiCal acceptance from beam-beam effects C. Rimbault, LAL Orsay LCWS06, Bangalore, 9-13 March.
NEEP 541 – Neutron Damage Fall 2002 Jake Blanchard.
Radiation study of the TPC electronics Georgios Tsiledakis, GSI.
Validation of Geant4 (V4.2) for GLAST-LAT -Comparison with Theory, Beam Test Data and EGS4 – S. Ogata, T. Mizuno, H. Mizushima (Hiroshima/SLAC) P. Valtersson,
Beam Background Simulation at Belle/KEKB Motivation SR background Particle background Feedback to the detector design SR alarm Summary O. Tajima (Tohoku.
Se Byeong Lee, Ph.D Chief Medical Physicist Proton Therapy Center in NCC, Korea.
Koichi MurakamiGeant4 Physics Verification and Validation (17-19/Jul./2006) 1 Results from the recent carbon test beam at HIMAC Koichi Murakami Statoru.
MCS overview in radiation therapy
Adapting A Clinical Medical Accelerator For Primary Standard Dosimetry
E. Mezzenga 1, E. Cagni 1, A. Botti 1, M. Orlandi 1, W.D. Renner 2, M. Iori 1 1. Medical Physics Unit, ASMN-IRCCS of Reggio Emilia, Italy 2. MathResolution.
Qing Liang, PhD Medical Physicist Mercy Health System, Janesville, WI
Positron production rate vs incident electron beam energy for a tungsten target
Summary of the Compton-PET project
Geant4 REMSIM application
Geant4 physics validation: Bragg Peak
The Hadrontherapy Geant4 advanced example
GEANT Simulations and Track Reconstruction
Geant4 at IST Applications in Brachytherapy
P. Rodrigues, A. Trindade, L.Peralta, J. Varela
GAMOS tutorial Plug-in’s Exercises
Chapter 5 - Interactions of Ionizing Radiation
Precision validation of Geant4 electromagnetic physics
The Geant4 Hadrontherapy Advanced Example
Presentation transcript:

Validation of GEANT4 versus EGSnrc Yann PERROT LPC, CNRS/IN2P3

Motivation  Electron transport crucial to provide accurate dose estimation for medical physics applications (accuracy ~2-3%)  EGSnrc : simulation of the coupled transport of electrons and photons from few keV up to ~100 GeV  EGSnrc passes the fano cavity test : robust MSC algorithm → « golden standard » 2 Bremsstrahlung NIST XS or Relativistic FBA + corrections ICRU radiative stopping power Inelastic collisions Moller CSDA from Bethe-Bloch ICRU 37 Elastic collisionsScreened Rutherford x spin correction Ion chamber response in 60 Co beam Med Phys 27 (2000), ESTEPE is the maximal fractional energy loss by step EGSnrc electrons physics Targeted RT Medical Linac 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Extended examples : results available  TestEm11 : Pencil Beam Kernel /electromagnetic/testem11/sandia/EGSnrc Depth dose distribution Al : 314 keV, 521 keV, 1033 keV Mo : 500 keV Ta : 300 keV, 500 keV, 1000 keV  TestEm12 : Dose Point Kernel /electromagnetic/testem12/berger/EGSnrc Enegy deposition profile Water : 10 keV, 15 keV, 100 keV, 1000 keV  electronScattering /medical/electronScattering/EGS_13MeV Fluence distribution 13 MeV : Be, C, Al, Ti, Au scattering foil 3 z r Exit Window Scattering foil Chamber Helium Al rings Scoring plane 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayers configuration  Configuration proposed by Rogers and Mohan (13th Int. Conf. On the Use of Computers in Radiation Therapy, 2000)  Electrons 20 MeV : beam size = 1.5 x 1.5 cm²  Four layers : section = 30.5 x 30.5 cm²  Water 1. g/cm 3 2 cm  Aluminium g/cm 3 1 cm  Lung0.26 g/cm 3 3 cm  Water1. g/cm 3 9 cm  Scoring region : 5x5x2 mm 3 voxels centered on the beam axis Geometry fully voxelized with EGSnrc  Quantity : Dose/Fluence = Dose/(Num primaries x field size) 4 5 x 5 x 2 mm 3 Wate r Al Lung 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayers: EM Standard  Adaptation of Testem11 (G4 9.6.b01) to manage voxelized geometry 5 G4 vs EGSnrc ~3% G4 vs EGSnrc ~6% WaterAlLung 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayers: Urban’s Models 6 G4 vs EGSnrc <0.5% WaterAlLung 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayers: Stability cut/step max 1/2 7 WaterAlLung Water 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayers: Stability cut/step max 2/2 8 WaterAlLung Water 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

TestEm11: Response for large transfer size 9 ALUMINIUM Beam size : 1.5 x 1.5 cm2 Transfer size : 25 x 25 cm² Cut 100 µm SM 50 µm 1/2 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

TestEm11: Response for large transfer size 10 LUNG Beam size : 1.5 x 1.5 cm2 Transfer size : 25 x 25 cm² Cut 100 µm SM 50 µm 2/2 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Conclusion  Geant4 for RT applications:  EM Physics List Standard option3 not adapted for RT applications : Urban95 by default  Nevertheless… Urban95 less step size dependent  Validation vs EGSnrc :  Benefit of a robust MSC model : reference when no experimental data  Ready to continue comparisons / provide results for G4 Collaboration 1109/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

THANK YOU ! 1209/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayer configuration : Std, LE, SS 1309/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Multilayers: Stability cut/step max 14 WaterAlLung Water 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

Materials for the multilayer configuration 15 Water Aluminium EGS Lung 09/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

TestEm12: Water, electrons 100 keV 1609/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012

TestEm12: Water, electrons 15 keV 1709/11/2012Y. Perrot - G4 Collaboration Meeting, Chartres Sept 2012