 Find the horizontal and vertical asymptotes of the following rational functions 1. (2x) / (3x 2 +1) 2. (2x 2 ) / (x 2 – 1) Note: Vertical asymptotes-

Slides:



Advertisements
Similar presentations
Warm Up Find the zeros of the following function F(x) = x2 -1
Advertisements

Holes & Slant Asymptotes
Rational Expressions GRAPHING.
Rational function A function  of the form where p(x) and q(x) are polynomials, with q(x) ≠ 0, is called a rational function.
2.7 Rational Functions and Their Graphs Graphing Rational Functions.
Warm-Up: FACTOR 1.x 2 – x x x 2 – x – 2 5.x 2 – 5x – x 2 – 19x – 5 7.3x x - 8.
Warm-Up: January 12, 2012  Find all zeros of. Homework Questions?
3.6: Rational Functions and Their Graphs
Rational Functions Sec. 2.7a. Definition: Rational Functions Let f and g be polynomial functions with g (x ) = 0. Then the function given by is a rational.
LIAL HORNSBY SCHNEIDER
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
4.4 Rational Functions Objectives:
Section 7.2.  A rational function, f is a quotient of polynomials. That is, where P(x) and Q(x) are polynomials and Q(x) ≠ 0.
Here are some examples:
Polynomial and Rational Functions
2.7 Rational Functions By: Meteor, Al Caul, O.C., and The Pizz.
Copyright © Cengage Learning. All rights reserved. 4 Rational Functions and Conics.
The exponential function f with base a is defined by f(x) = ax
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
2.6 & 2.7 Rational Functions and Their Graphs 2.6 & 2.7 Rational Functions and Their Graphs Objectives: Identify and evaluate rational functions Graph.
5.1 Polynomial Functions Degree of a Polynomial: Largest Power of X that appears. The zero polynomial function f(x) = 0 is not assigned a degree.
Rational Functions and Their Graphs
Copyright © 2014, 2010 Pearson Education, Inc. Chapter 2 Polynomials and Rational Functions Copyright © 2014, 2010 Pearson Education, Inc.
Rational Functions - Rational functions are quotients of polynomial functions: where P(x) and Q(x) are polynomial functions and Q(x)  0. -The domain of.
Section 2.6 Rational Functions Part 1
Graphing Rational Functions. 2 xf(x)f(x) xf(x)f(x) As x → 0 –, f(x) → -∞.
Copyright © 2011 Pearson Education, Inc. Slide More on Rational Functions and Graphs Asymptotes for Rational Functions Let define polynomials.
POLYNOMIAL, RATIONAL, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS College Algebra.
Class Work Find the real zeros by factoring. P(x) = x4 – 2x3 – 8x + 16
Section 2.6 Rational Functions Hand out Rational Functions Sheet!
Aim: What are the rational function and asymptotes? Do Now: Graph xy = 4 and determine the domain.
Lesson 3.5 – Finding the domain of a Rational Function To find the domain set the denominator to zero and solve for x. The domain will be all real number.
The Friedland Method 9.3 Graphing General Rational Functions.
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Section 2.7. Graphs of Rational Functions Slant/Oblique Asymptote: in order for a function to have a slant asymptote the degree of the numerator must.
Algebra 2 Ch.9 Notes Page 67 P Rational Functions and Their Graphs.
Asymptotes.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
HOMEWORK: WB p.31 (don’t graph!) & p.34 #1-4. RATIONAL FUNCTIONS: HORIZONTAL ASYMPTOTES & INTERCEPTS.
Warm Up Find a polynomial function with integer coefficient that has the given zero. Find the domain of:
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Alg 2 Warm Up – Wed (5/15)-Thurs (5/16) 1.List the possible roots. Then find all the zeros of the polynomial function. f(x) = x 4 – 2x 2 – 16x -15 Answers:
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 3 Polynomial and Rational Functions.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Rational Functions Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as where p(x) and q(x)
Section 2.6 Rational Functions and their Graphs. Definition A rational function is in the form where P(x) and Q(x) are polynomials and Q(x) is not equal.
1 Analyze and sketch graphs of rational functions. 2.6 What You Should Learn.
Bellwork 1.Identify any vertical and horizontal asymptotes, or holes in the graphs of the following functions. 2. Write a polynomial function with least.
Essential Question: How do you find intercepts, vertical asymptotes, horizontal asymptotes and holes? Students will write a summary describing the different.
Date: 1.2 Functions And Their Properties A relation is any set of ordered pairs. The set of all first components of the ordered pairs is called the domain.
Section 2.7 By Joe, Alex, Jessica, and Tommy. Introduction Any function can be written however you want it to be written A rational function can be written.
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Warm-Up: FACTOR 1.x 2 – x x x 2 – x – 2 5.x 2 – 5x – x 2 – 19x – 5 7.3x x - 8.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Graph Sketching: Asymptotes and Rational Functions OBJECTIVES  Find limits.
Chapter 2 – Polynomial and Rational Functions 2.6/7 – Graphs of Rational Functions and Asymptotes.
College Algebra Chapter 3 Polynomial and Rational Functions Section 3.5 Rational Functions.
4.5 Rational Functions  For a rational function, find the domain and graph the function, identifying all of the asymptotes.
Graphs of Rational Functions Section 2.7. Objectives Analyze and sketch graphs of rational functions. Sketch graphs of rational functions that have slant.
Rational Functions A rational function has the form
Rational Functions…… and their Graphs
Aim: What are the rational function and asymptotes?
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
College Algebra Chapter 3 Polynomial and Rational Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Rational Functions and Their Graphs
3.3: Rational Functions and Their Graphs
3.3: Rational Functions and Their Graphs
Rational Functions A rational function f(x) is a function that can be written as where p(x) and q(x) are polynomial functions and q(x) 0 . A rational.
Graphing Rational Functions
Presentation transcript:

 Find the horizontal and vertical asymptotes of the following rational functions 1. (2x) / (3x 2 +1) 2. (2x 2 ) / (x 2 – 1) Note: Vertical asymptotes- set denominator equal to zero and solve. Look at your chart for horizontal asymptotes.

Essential Question: How do you sketch graphs of rational functions? Standard: MM4A4. Students will investigate functions. a. Compare and contrast properties of functions within and across the following types: linear, quadratic, polynomial, power, rational, exponential, logarithmic, trigonometric, and piecewise.

Vertical Asymptotes of Rational Functions Review If the graph of a rational function has vertical asymptotes, they can be located by using the following theorem. Locating Vertical Asymptotes If is a rational function in which p(x) and q(x) have no common factors and a is a zero of q(x), the denominator, then x  a is a vertical asymptote of the graph of f. Locating Vertical Asymptotes If is a rational function in which p(x) and q(x) have no common factors and a is a zero of q(x), the denominator, then x  a is a vertical asymptote of the graph of f.

Horizontal Asymptotes of Rational Functions If the graph of a rational function has a horizontal asymptote, it can be located by using the following theorem. Locating Horizontal Asymptotes Let f be the rational function given by The degree of the numerator is n. The degree of the denominator is m. 1.If n  m, the x-axis is the horizontal asymptote of the graph of f. 2.If n  m, the line y  is the horizontal asymptote of the graph of f. 3.If n  m, the graph of f has no horizontal asymptote. Locating Horizontal Asymptotes Let f be the rational function given by The degree of the numerator is n. The degree of the denominator is m. 1.If n  m, the x-axis is the horizontal asymptote of the graph of f. 2.If n  m, the line y  is the horizontal asymptote of the graph of f. 3.If n  m, the graph of f has no horizontal asymptote. Graphs of Rational functions

3.6: Rational Functions and Their Graphs Strategy for Graphing a Rational Function Suppose that where p(x) and q(x) are polynomial functions with no common factors. 1. Determine whether the graph of f has symmetry. f (  x)  f (x): y-axis symmetry f (  x)  f (x): origin symmetry 2. Find the y-intercept (if there is one) by evaluating f (0). 3. Find the x-intercepts (if there are any) by solving the equation p(x)  Find any vertical asymptote(s) by solving the equation q (x)  Find the horizontal asymptote (if there is one) using the rule for determining the horizontal asymptote of a rational function. 6. Plot at least one point between and beyond each x-intercept and vertical asymptote. 7. Use the information obtained previously to graph the function between and beyond the vertical asymptotes. Strategy for Graphing a Rational Function Suppose that where p(x) and q(x) are polynomial functions with no common factors. 1. Determine whether the graph of f has symmetry. f (  x)  f (x): y-axis symmetry f (  x)  f (x): origin symmetry 2. Find the y-intercept (if there is one) by evaluating f (0). 3. Find the x-intercepts (if there are any) by solving the equation p(x)  Find any vertical asymptote(s) by solving the equation q (x)  Find the horizontal asymptote (if there is one) using the rule for determining the horizontal asymptote of a rational function. 6. Plot at least one point between and beyond each x-intercept and vertical asymptote. 7. Use the information obtained previously to graph the function between and beyond the vertical asymptotes.

EXAMPLE:Graphing a Rational Function Step 4Find the vertical asymptotes: Set q(x)  0. x 2  4  0 Set the denominator equal to zero. x 2  4 x   2 Vertical asymptotes: x  2 and x  2. Solution mor e Step 3Find the x-intercept: 3x 2  0, so x  0: x-intercept is 0. Step 1Determine symmetry: f (  x)    f (x): Symmetric with respect to the y-axis. Step 2Find the y-intercept: f (0)  0: y-intercept is 0.

EXAMPLE:Graphing a Rational Function Solution The figure shows these points, the y-intercept, the x-intercept, and the asymptotes. x 33 11 134 f(x) 11 11 4 mor e Step 6Plot points between and beyond the x-intercept and the vertical asymptotes. With an x-intercept at 0 and vertical asymptotes at x  2 and x  2, we evaluate the function at  3,  1, 1, 3, and 4. Step 5Find the horizontal asymptote: y  3 / 1  Vertical asymptote: x = 2 Vertical asymptote: x = -2 Horizontal asymptote: y = 3 x-intercept and y-intercept 3.6: Rational Functions and Their Graphs

EXAMPLE:Graphing a Rational Function Solution Step 7Graph the function. The graph of f (x)  2x is shown in the figure. The y-axis symmetry is now obvious x = -2 y = 3 x = Vertical asymptote: x = 2 Vertical asymptote: x = -2 Horizontal asymptote: y = 3 x-intercept and y-intercept 3.6: Rational Functions and Their Graphs

EXAMPLE:Finding the Slant Asymptote of a Rational Function Find the slant asymptotes of f (x)  Solution Because the degree of the numerator, 2, is exactly one more than the degree of the denominator, 1, the graph of f has a slant asymptote. To find the equation of the slant asymptote, divide x  3 into x 2  4x  5: 2 1  4   3 1  1  8 3 Remainder 3.6: Rational Functions and Their Graphs mor e

EXAMPLE:Finding the Slant Asymptote of a Rational Function Find the slant asymptotes of f (x)  Solution The equation of the slant asymptote is y  x  1. Using our strategy for graphing rational functions, the graph of f (x)  is shown Vertical asymptote: x = 3 Vertical asymptote: x = 3 Slant asymptote: y = x - 1 Slant asymptote: y = x : Rational Functions and Their Graphs

Home work: P153 # 13-16, 23, 31 (no graphing) P 161 # 9, 10