RIKEN Center for Emergent Matter ScienceCenter for Emergent Matter Science Ryotaro ARITARyotaro ARITA Non-empirical post-Eliashberg study on high T c superconductivity in H 3 S
RIKEN Wataru Sano Takashi Koretsune Yusuke Nomura Univ. Tokyo Ryosuke Akashi Terumasa Tadano Shinji Tsuneyuki 2 Collaborators R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, RA, PRB 91, (2015) W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv:
3 High T c SC in sulfur hydrides A. P. Drozdov et al., Nature (2015) T c 150GPa Isotope effect ~0.3 → Phonon mechanism
4 McMillan’s formula Logarithmic averaged frequency Ele-ph coupling Coulomb pseudopotential McMillan PR1968 Allen-Dynes PRB 1975 Empirical parameter Fully ab initio calculation of T c = big challenge
5 Outline P=250GPaTcTc TcTc const DOS225 K Energy dependent DOS168 K-57K Self consistency in 193 K+25K Zero point motion202 K+9K Anharmonicity181 K-21K Vertex correction151K-30K Plasmon effect171K+20K Significant impact on T c Fully non-empirical calculation of T c free from * ln /E F, T c /E F not small → we have to consider effects neglected in ME T c exp (~160K at 250GPa) is reproduced from first principles
6 McMillan’s formula Logarithmic averaged frequency Ele-ph coupling Coulomb pseudopotential McMillan PR1968 Allen-Dynes PRB 1975
We need large and for large For covalent system, is usually large, but … 7 Doped diamond Diamond is a 3D insulator → we need to dope many carriers ~ 0.3 E - E F [eV] DOS [states/eV/atom] doping T c < 10K Hard system with very high
8 MgB 2 graphite MgB 2 σ band is occupied σ band makes FS E 2g phonon couples with electrons for electrons = 1.2 2D DOS for band Kortus et al., PRL2001 Yildirim et al., PRL2001 d BB =1.78 Å T c = 39K
9 H 3 S: Density of states Van Hove singularity Im-3m structure Large Strong bond d HS < 1.5 Å Duan et al., Sci. Rep. 2015
10 H 3 S: Eliashberg function Large >2 ! Duan et al., Sci. Rep ~200meV !
11 High T c SC in metallic hydrogen H = lightest element → large
12 H 3 S: experiment A. P. Drozdov et al., Nature (2015) M. Einaga et al., arXiv: H3SH3S D3SD3S Isotope effect ~ K
13 Self-consistent perturbation theory: lowest-order dressed-phonon and dressed Coulomb contribution to retained (Nambu-Gor’kov formalism) Migdal-Eliashberg Theory We assume D /E F (T c /E F ) is sufficiently small
14 Non-adiabatic SC D /E F (T c /E F ) is not small ? “Open Pandora’s box” We need to consider effects neglected in ME
15 Beyond Migdal-Eliashberg Theory (1)Dynamical structure of V c : plasmon assisted SC (2)Vertex correction D /E F is not small ? If small q is dominant in SC is enhanced
16 Beyond Migdal-Eliashberg Theory (3) Zero point motion with ZPM w/o ZPM E-E F [eV] DOS [states/eV/atom]
17 Beyond Migdal-Eliashberg Theory (4) Anharmonicity P1 Cccm R3mIm-3m Structural phase transition from R3m to Im-3m Duan et al., Sci. Rep. 2015
18 Beyond Migdal-Eliashberg Theory (4) Anharmonicity Frequency [cm -1 ] anharmonic harmonic Electron-phonon coupling: weaker Phonon frequency: higher
19 Non-empirical calculation of T c First- principles Extension of DFT (Superconducting DFT) DFT + (post) Migdal- Eliashberg W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv: R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and RA, PRB 91, (2015)
20 Conventional calculation based on ME ✔ Momentum average & constant DOS ✔ Coulomb pseudo potential W VcVc V ph ωDωD 0 empirical parameter
21 Non-empirical calculation of retardation effect T c calc =225 K Converged ! The energy range of W can be covered by m~ # of Matsubara freq. Const DOS approx. overestimate T c exp energy DOS
22 Non-empirical calculation of retardation effect # of Matsubara freq. T c [K] 225 K (constant DOS approx.) → 168 K (energy dependent DOS) Converged ! Const DOS approx. overestimate T c by 57K energy DOS
23 Feedback effect in self-consistent calc. of In self-consistent calculation, mass enhancement effect becomes weaker (feedback effect) T c : 168 K → 193 K (+25 K)
24 Zero point motion with ZPM w/o ZPM E-E F [eV] DOS [states/eV/atom] T c : 193 K → 202 K (+9 K)
25 Anharmonicity Electron-phonon coupling: weaker Phonon frequency: higher T c : 202 K → 181 K (-21 K) Frequency [cm -1 ] anharmonic harmonic
26 Vertex correction : Einstein Phonon Simplifying... At the lowest Matsubara frequency... ( ω n = π/β ) 〈 Γ q (1) 〉 q → ~ (H 3 S) T c decreases by 30K
27 P=250GPaTcTc TcTc const DOS225 K Energy dependent DOS168 K-57K Self consistency193 K+25K Zero point motion202 K+9K Anharmonicity181 K-21K Vertex correction151K-30K Plasmon effect?? A. P. Drozdov et al., Nature (2015) M. Einaga et al., arXiv: T c exp ~160K Significant impact on T c Result
28 Non-empirical calculation of T c First- principles Extension of DFT (Superconducting DFT) DFT + (post) Migdal- Eliashberg W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv: R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and RA, PRB 91, (2015)
29 DFT for normal states v Hohenberg-Kohn theorem one-to-one correspondence Kohn-Sham equation
30 DFT for superconductors electron density anomalous density [v, ] [ , ] Hohenberg-Kohn theorem for superconductors Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005)
31 Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005) SCDFT: Kohn-Sham BdG equation
32 Once F xc is given, we can calculate T c without adjustable parameters Linearized gap equation Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005) SCDFT: Gap equation
33 SCDFT: exchange correlation functional F (anomalous Green fn.) F xc e-ph = F xc e-e = Static screened Coulomb V c F (anomalous Green fn.) Kohn-Sham perturbation theory ( F, D, V c are obtained from first-principles calc.) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005)
34 SCDFT: benchmark calculation
35 SCDFT for plasmon mechanism F (anomalous Green fn.) F xc e-ph = F xc e-e = F (anomalous Green fn.) Dynamical screened Coulomb V c ( ) with plasmon-pole approximation Kohn-Sham perturbation theory ( F, D, V c are obtained from first-principles calc.) R. Akashi & RA, PRL (2013), JPSJ (2014)
36 Li under high pressures: Plasmon effect R. Akashi & RA, PRL (2013), JPSJ (2014)
37 H 3 S: Plasmon effect Temperature (K) (eV) Dynamical SCDFT (phonon+plasmon) Static SCDFT (phonon only) +20K
38 P=250GPaTcTc TcTc const DOS225 K Energy dependent DOS168 K-57K Self consistency193 K+25K Zero point motion202 K+9K Anharmonicity181 K-21K Vertex correction151K-30K Dynamical Coulomb171K+20K A. P. Drozdov et al., Nature (2015) M. Einaga et al., arXiv: T c exp ~160K T c exp is reproduced by non-empirical calculation Significant impact on T c Result
39 H 3 S vs H 2 S E-E F [eV] DOS [states/eV/f.u.] E-E F [eV] H 2 S, P-1H 3 S, Im-3m No van Hove singularity
40 P=140GPaTcTc TcTc const DOS56 K Energy dependent DOS66 K+10K Self consistency63 K-3K Zero point motion44 K-19K Anharmonicity33 K-11K Vertex correction24 K-9K Dynamical Coulomb44 K+20K A. P. Drozdov et al., Nature (2015) T c exp =30~60K T c exp is reproduced by non-empirical calculation Result
41 Conclusion We performed a fully non-empirical calculation of T c free from * We found that effects neglected in ME on T c is significant We succeeded in reproducing T c exp (~160K at for H 3 S, ~40K for H 2 S)
42 Conventional ME vs Post ME + W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv:
43 Retardation effect in SCDFT
44 Importance of dynamical Coulomb int. “Plasmon mechanism” Y. Takada, 1978
45 High T c in Li under high pressures Shimizu et al., Nature 419, 597 (2002) Struzhkin et al., Science 298, 1213 (2002) Deemyad and Schilling, PRL 91, (2003) High T c ~20K under P~30GPa
46 Discussion: can we enhance T c ? SC suppressed Non-adiabatic SC D /E F is not small ? For H 3 S, Q c ~1, but … If forward scattering is dominant, the vertex correction P enhances T c Grimaldi et al., PRL 1995
47 Discussion: can we enhance T c ? C. Heil and L. Boeri, PRB 2015 Construct a set of “virtual” isovalent atom X, which interpolates between actual chalchogen atoms Mixing S and O → H-X bond becomes stronger → enhance T c