RIKEN Center for Emergent Matter ScienceCenter for Emergent Matter Science Ryotaro ARITARyotaro ARITA Non-empirical post-Eliashberg study on high T c superconductivity.

Slides:



Advertisements
Similar presentations
Spectroscopy at the Particle Threshold H. Lenske 1.
Advertisements

Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
Introduction to PAW method
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Electronic structure of La2-xSrxCuO4 calculated by the
Interpretation of the Raman spectra of graphene and carbon nanotubes: the effects of Kohn anomalies and non-adiabatic effects S. Piscanec Cambridge University.
University of Cagliari
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Coulomb excitations in AA- and AB-stacked bilayer graphites.
1. Chemical Bonding in Solids The Periodic Table ‚Covalent Bonding ƒIonic Bonding „Metallic Bonding …The Hydrogen Bond †The van der Waals Bond.
The Nuts and Bolts of First-Principles Simulation
Superconductivity of MgB2 Zhiping Yin Mar. 14, 2007 Final project of Advanced electronic structure course PHY250-6.
Crystal Lattice Vibrations: Phonons
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
Theory of Intersubband Antipolaritons Mauro F
Lecture 17: Excitations: TDDFT Successes and Failures of approximate functionals Build up to many-body methods Electronic Structure of Condensed Matter,
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Superconductivity III: Theoretical Understanding Physics 355.
First-Principles Prediction of Tc (Takada) ISSP Workshop/Symposium: MASP Theory for Reliable First-Principles Prediction of the Superconducting.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
Yoshida Laboratory Yuya Yamada (山田裕也) 1 Theoretical prediction of structures and properties of simple materials under high pressure ( 高圧下における単純物質の構造と物性の理論的予測.
Matteo Calandra, Gianni Profeta, Michele Casula and Francesco Mauri Adiabatic and non-adiabatic phonon dispersion in a Wannier functions approach: applications.
Phonons & electron-phonon coupling Claudia Ambrosch-Draxl Department für Materialphysik, Montanunversität Leoben, Austria Institut für Physik, Universität.
Sergey Savrasov Department of Physics, University of California, Davis Turning Band Insulators into Exotic Superconductors Xiangang Wan Nanjing University.
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
Disordered Electron Systems II Roberto Raimondi Perturbative thermodynamics Renormalized Fermi liquid RG equation at one-loop Beyond one-loop Workshop.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Fundamentals of DFT R. Wentzcovitch U of Minnesota VLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT.
Density Functional Theory Richard M. Martin University of Illinois
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Physics “Advanced Electronic Structure” Frozen Phonon and Linear Response Calcuations of Lattice Dynamics Contents: 1. Total Energies and Forces.
Density Functional Theory The Basis of Most Modern Calculations
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
Physics “Advanced Electronic Structure” Lecture 2. Density Functional Theory Contents: 1. Thomas-Fermi Theory. 2. Density Functional Theory. 3.
BASICS OF SEMICONDUCTOR
FLEX Study of  ’-(ET) 2 AuCl 2 Hiori Kino ( National institute for materias science ) Hiroshi Kontani ( Nagoya Univ. ) Tsuyoshi Miyazaki ( National institute.
Matthew Lane, Professor J. Staunton.
SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG CORRELATIONS
Yoshiyuki Miyamoto ’ s talk Please standby. Yoshiyuki Miyamoto ’ s talk Please standby.
THERMODYNAMICS OF THE HIGH TEMPERATURE QUARK-GLUON PLASMA Jean-Paul Blaizot, CNRS and ECT* Komaba - Tokyo November 25, 2005.
Time-Dependent Density Functional Theory (TDDFT) Takashi NAKATSUKASA Theoretical Nuclear Physics Laboratory RIKEN Nishina Center CNS-EFES Summer.
Hierarchical method for the dynamics of clusters and molecules in contact with an environment Molecules/clusters + environment (embedded/deposited) Fundamental.
Chapter 7 in the textbook Introduction and Survey Current density:
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
Metal Photocathodes: Three-Step Model and Beyond W. Wan 1, H. A. Padmore 1, T. Vecchione 1 & T.-C. Chiang 2 1 ALS, Lawrence Berkeley National Laboratory.
Lecture 4 – Quantum Electrodynamics (QED)
Correlation in graphene and graphite: electrons and phonons C. Attaccalite, M. Lazzeri, L. Wirtz, F. Mauri, and A. Rubio.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
Quest for Higher Tc or RTS
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with
Regularized delta interactions for nuclear structure calculations
Production of an S(α,β) Covariance Matrix with a Monte Carlo-Generated
Giant Superconducting Proximity Effect in Composite Systems Chun Chen and Yan Chen Dept. of Physics and Lab of Advanced Materials, Fudan University,
Heat capacity of the lattice
Local Density Functional Theory for Superfluid Fermionic Systems
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
Time-Dependent Density Functional Theory (TDDFT)
Hartree Self Consistent Field Method
Approximations to the exchange-correlation functional
Presentation transcript:

RIKEN Center for Emergent Matter ScienceCenter for Emergent Matter Science Ryotaro ARITARyotaro ARITA Non-empirical post-Eliashberg study on high T c superconductivity in H 3 S

RIKEN Wataru Sano Takashi Koretsune Yusuke Nomura Univ. Tokyo Ryosuke Akashi Terumasa Tadano Shinji Tsuneyuki 2 Collaborators R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, RA, PRB 91, (2015) W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv:

3 High T c SC in sulfur hydrides A. P. Drozdov et al., Nature (2015) T c 150GPa Isotope effect  ~0.3 → Phonon mechanism

4 McMillan’s formula Logarithmic averaged frequency Ele-ph coupling Coulomb pseudopotential McMillan PR1968 Allen-Dynes PRB 1975 Empirical parameter Fully ab initio calculation of T c = big challenge

5 Outline P=250GPaTcTc TcTc const DOS225 K Energy dependent DOS168 K-57K Self consistency in  193 K+25K Zero point motion202 K+9K Anharmonicity181 K-21K Vertex correction151K-30K Plasmon effect171K+20K Significant impact on T c  Fully non-empirical calculation of T c free from  *   ln /E F, T c /E F not small → we have to consider effects neglected in ME T c exp (~160K at 250GPa) is reproduced from first principles

6 McMillan’s formula Logarithmic averaged frequency Ele-ph coupling Coulomb pseudopotential McMillan PR1968 Allen-Dynes PRB 1975

We need large and for large For covalent system, is usually large, but … 7 Doped diamond Diamond is a 3D insulator → we need to dope many carriers ~ 0.3 E - E F [eV] DOS [states/eV/atom] doping T c < 10K Hard system with very high 

8 MgB 2 graphite MgB 2 σ band is occupied σ band makes FS E 2g phonon couples with  electrons for  electrons = 1.2 2D DOS for  band Kortus et al., PRL2001 Yildirim et al., PRL2001 d BB =1.78 Å T c = 39K

9 H 3 S: Density of states Van Hove singularity Im-3m structure Large Strong  bond d HS < 1.5 Å Duan et al., Sci. Rep. 2015

10 H 3 S: Eliashberg function Large >2 ! Duan et al., Sci. Rep ~200meV !

11 High T c SC in metallic hydrogen H = lightest element → large

12 H 3 S: experiment A. P. Drozdov et al., Nature (2015) M. Einaga et al., arXiv: H3SH3S D3SD3S Isotope effect  ~ K

13 Self-consistent perturbation theory: lowest-order dressed-phonon and dressed Coulomb contribution to  retained (Nambu-Gor’kov formalism) Migdal-Eliashberg Theory We assume  D /E F (T c /E F ) is sufficiently small

14 Non-adiabatic SC  D /E F (T c /E F ) is not small ? “Open Pandora’s box” We need to consider effects neglected in ME

15 Beyond Migdal-Eliashberg Theory (1)Dynamical structure of V c : plasmon assisted SC (2)Vertex correction  D /E F is not small ? If small q is dominant in SC is enhanced

16 Beyond Migdal-Eliashberg Theory (3) Zero point motion with ZPM w/o ZPM E-E F [eV] DOS [states/eV/atom]

17 Beyond Migdal-Eliashberg Theory (4) Anharmonicity P1 Cccm R3mIm-3m Structural phase transition from R3m to Im-3m Duan et al., Sci. Rep. 2015

18 Beyond Migdal-Eliashberg Theory (4) Anharmonicity Frequency [cm -1 ] anharmonic harmonic Electron-phonon coupling: weaker Phonon frequency: higher

19 Non-empirical calculation of T c First- principles Extension of DFT (Superconducting DFT) DFT + (post) Migdal- Eliashberg W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv: R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and RA, PRB 91, (2015)

20 Conventional calculation based on ME ✔ Momentum average & constant DOS ✔ Coulomb pseudo potential W VcVc V ph ωDωD 0 empirical parameter

21 Non-empirical calculation of retardation effect T c calc =225 K Converged ! The energy range of W can be covered by m~ # of Matsubara freq. Const DOS approx. overestimate T c exp energy DOS 

22 Non-empirical calculation of retardation effect # of Matsubara freq. T c [K] 225 K (constant DOS approx.) → 168 K (energy dependent DOS) Converged ! Const DOS approx. overestimate T c by 57K energy DOS

23 Feedback effect in self-consistent calc. of  In self-consistent calculation, mass enhancement effect becomes weaker (feedback effect) T c : 168 K → 193 K (+25 K)

24 Zero point motion with ZPM w/o ZPM E-E F [eV] DOS [states/eV/atom] T c : 193 K → 202 K (+9 K)

25 Anharmonicity Electron-phonon coupling: weaker Phonon frequency: higher T c : 202 K → 181 K (-21 K) Frequency [cm -1 ] anharmonic harmonic

26 Vertex correction : Einstein Phonon Simplifying... At the lowest Matsubara frequency... ( ω n = π/β ) 〈 Γ q (1) 〉 q → ~ (H 3 S) T c decreases by 30K

27 P=250GPaTcTc TcTc const DOS225 K Energy dependent DOS168 K-57K Self consistency193 K+25K Zero point motion202 K+9K Anharmonicity181 K-21K Vertex correction151K-30K Plasmon effect?? A. P. Drozdov et al., Nature (2015) M. Einaga et al., arXiv: T c exp ~160K Significant impact on T c Result

28 Non-empirical calculation of T c First- principles Extension of DFT (Superconducting DFT) DFT + (post) Migdal- Eliashberg W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv: R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and RA, PRB 91, (2015)

29 DFT for normal states v   Hohenberg-Kohn theorem one-to-one correspondence Kohn-Sham equation

30 DFT for superconductors electron density anomalous density [v,  ]  [ ,  ] Hohenberg-Kohn theorem for superconductors Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005)

31 Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005) SCDFT: Kohn-Sham BdG equation

32 Once F xc is given, we can calculate T c without adjustable parameters Linearized gap equation Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005) SCDFT: Gap equation

33 SCDFT: exchange correlation functional F (anomalous Green fn.) F xc e-ph = F xc e-e = Static screened Coulomb V c F (anomalous Green fn.) Kohn-Sham perturbation theory ( F, D, V c are obtained from first-principles calc.) M. Lüders et al, PRB 72, (2005) M. Marques et al, PRB 72, (2005)

34 SCDFT: benchmark calculation

35 SCDFT for plasmon mechanism F (anomalous Green fn.) F xc e-ph = F xc e-e = F (anomalous Green fn.) Dynamical screened Coulomb V c (  ) with plasmon-pole approximation Kohn-Sham perturbation theory ( F, D, V c are obtained from first-principles calc.) R. Akashi & RA, PRL (2013), JPSJ (2014)

36 Li under high pressures: Plasmon effect R. Akashi & RA, PRL (2013), JPSJ (2014)

37 H 3 S: Plasmon effect  Temperature (K) (eV) Dynamical SCDFT (phonon+plasmon) Static SCDFT (phonon only) +20K

38 P=250GPaTcTc TcTc const DOS225 K Energy dependent DOS168 K-57K Self consistency193 K+25K Zero point motion202 K+9K Anharmonicity181 K-21K Vertex correction151K-30K Dynamical Coulomb171K+20K A. P. Drozdov et al., Nature (2015) M. Einaga et al., arXiv: T c exp ~160K T c exp is reproduced by non-empirical calculation Significant impact on T c Result

39 H 3 S vs H 2 S E-E F [eV] DOS [states/eV/f.u.] E-E F [eV] H 2 S, P-1H 3 S, Im-3m No van Hove singularity

40 P=140GPaTcTc TcTc const DOS56 K Energy dependent DOS66 K+10K Self consistency63 K-3K Zero point motion44 K-19K Anharmonicity33 K-11K Vertex correction24 K-9K Dynamical Coulomb44 K+20K A. P. Drozdov et al., Nature (2015) T c exp =30~60K T c exp is reproduced by non-empirical calculation Result

41 Conclusion  We performed a fully non-empirical calculation of T c free from  *  We found that effects neglected in ME on T c is significant  We succeeded in reproducing T c exp (~160K at for H 3 S, ~40K for H 2 S)

42 Conventional ME vs Post ME + W. Sano, T. Koretsune, T. Tadano, R. Akashi, RA, arXiv:

43 Retardation effect in SCDFT

44 Importance of dynamical Coulomb int. “Plasmon mechanism” Y. Takada, 1978

45 High T c in Li under high pressures Shimizu et al., Nature 419, 597 (2002) Struzhkin et al., Science 298, 1213 (2002) Deemyad and Schilling, PRL 91, (2003) High T c ~20K under P~30GPa

46 Discussion: can we enhance T c ? SC suppressed Non-adiabatic SC  D /E F is not small ? For H 3 S, Q c ~1, but … If forward scattering is dominant, the vertex correction P enhances T c Grimaldi et al., PRL 1995

47 Discussion: can we enhance T c ? C. Heil and L. Boeri, PRB 2015 Construct a set of “virtual” isovalent atom X, which interpolates between actual chalchogen atoms Mixing S and O → H-X bond becomes stronger → enhance T c