Then/Now You wrote equations of lines using information about their graphs. Write the equation of a circle. Graph a circle on the coordinate plane.

Slides:



Advertisements
Similar presentations
12-5 Circles in the Coordinate Plane
Advertisements

Objectives Write equations and graph circles in the coordinate plane.
Notes Over 10.3 r is the radius radius is 4 units
11.1 Intro to Conic Sections & The Circle. What is a “Conic Section”? A curve formed by the intersection of a plane and a double right circular cone.
CIRCLES Unit 3-2. Equations we’ll need: Distance formula Midpoint formula.
Deriving the Equation of a Circle
[x – (–8)] 2 + (y – 0) 2 = ( 5 ) 2 Substitute (–8, 0) for (h, k) and 5 for r. Write the standard equation of a circle with center (–8, 0) and radius 5.
EXAMPLE 1 Graph an equation of a circle
EXAMPLE 1 Graph an equation of a circle Graph y 2 = – x Identify the radius of the circle. SOLUTION STEP 1 Rewrite the equation y 2 = – x
Geometry Equations of a Circle.
GeometryGeometry Lesson 75 Writing the Equation of Circles.
Equations of Circles 10.6 California State Standards 17: Prove theorems using coordinate geometry.
EXAMPLE 1 Write an equation of a circle Write the equation of the circle shown. The radius is 3 and the center is at the origin. x 2 + y 2 = r 2 x 2 +
10.6 Equations of Circles Advanced Geometry. What do you need to find the equation of a circle? Coordinates of the Center of the circle. Radius – Distance.
9-8 Equations of Circles Objectives: To write and use the equation of a circle in the coordinate plane.
A. x = 2, AB = 8 B. x = 1, AB = 5 C. D. x = –2, AB = –4
Splash Screen. Then/Now You wrote linear equations given either one point and the slope or two points. Write equations of lines in point-slope form. Write.
GEOMETRY HELP [x – (–8)] 2 + (y – 0) 2 = ( 5 ) 2 Substitute (–8, 0) for (h, k) and 5 for r. Write the standard equation of a circle with center (–8, 0)
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) Then/Now New Vocabulary Key Concept: Standard Form, Equation of a Circle Example 1:Write.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) CCSS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard Form Example.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) CCSS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard Form Example.
Square both sides to find the standard equation of a circle with radius r and center (h, k). Finding Equations of Circles You can write an equation of.
EXAMPLE 3 Write the standard equation of a circle The point (–5, 6) is on a circle with center (–1, 3). Write the standard equation of the circle. SOLUTION.
Unit 1 – Conic Sections Section 1.2 – The Circle Calculator Required.
Circles in the Coordinate Plane I can identify and understand equations for circles.
CirclesCircles 11.5 Equations of Circles Objective: To write an equation of a circle.
Section 9-3 Circles Objectives I can write equations of circles I can graph circles with certain properties I can Complete the Square to get into Standard.
11.5: Circles in the Coordinate Plane
EXAMPLE 1 Find a positive slope Let (x 1, y 1 ) = (–4, 2) = (x 2, y 2 ) = (2, 6). m = y 2 – y 1 x 2 – x 1 6 – 2 2 – (–4) = = = Simplify. Substitute.
GeometryGeometry 10.6 Equations of Circles Geometry.
Section 6.2 – The Circle. Write the standard form of each equation. Then graph the equation. center (0, 3) and radius 2 h = 0, k = 3, r = 2.
12.5 Circles in the Coordinate Plane
Algebra II Honors Problem of the Day Homework: p odds Without graphing find all symmetries for each equation.
Equations of Circles. Vocab Review: Circle The set of all points a fixed distance r from a point (h, k), where r is the radius of the circle and the point.
Write an Equation Using the Center and Radius A. Write the equation of the circle with a center at (3, –3) and a radius of 6. (x – h) 2 + (y – k) 2.
Bell Ringer: Simplify each expression
Circles in the Coordinate Plane
9.6 Circles in the Coordinate Plane Date: ____________.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) NGSSS Then/Now New Vocabulary Key Concept: Standard Form, Equation of a Circle Example.
8.1 The Rectangular Coordinate System and Circles Part 2: Circles.
GeometryGeometry Equations of Circles. GeometryGeometry Finding Equations of Circles You can write an equation of a circle in a coordinate plane if you.
Equations of Circles. You can write an equation of a circle in a coordinate plane, if you know: Its radius The coordinates of its center.
Concept. Example 1 Write an Equation Given the Radius LANDSCAPING The plan for a park puts the center of a circular pond of radius 0.6 mile at 2.5 miles.
Sec 1.8 Circles Objectives: To understand the distance and midpoint formulas. To understand the equations of circles and their graphs.
Equation of a Circle. Equation Where the center of the circle is (h, k) and r is the radius.
EXAMPLE 1 Write an equation of a circle Write the equation of the circle shown. SOLUTION The radius is 3 and the center is at the origin. x 2 + y 2 = r.
Splash Screen. Then/Now You wrote equations of lines using information about their graphs. Write the equation of a circle. Graph a circle on the coordinate.
Equation of Circle Midpoint and Endpoint Distance Slope
Holt McDougal Geometry 12-7 Circles in the Coordinate Plane 12-7 Circles in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Holt Geometry 11-7 Circles in the Coordinate Plane 11-7 Circles in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
  Where the center of the circle is (h, k) and r is the radius. Equation.
Warm Up Find the slope of the line that connects each pair of points. – (5, 7) and (–1, 6) 2. (3, –4) and (–4, 3)
10-8 Equations of Circles 1.Write the equation of a circle. 2.Graph a circle on the coordinate plane.
Circles March 18th A ___________ is the set of all point that are a fixed distance, called the _________ from a fixed point, called the _________.
Equations of Circles LESSON 10–8. Lesson Menu Five-Minute Check (over Lesson 10–7) TEKS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard.
8.1 The Rectangular Coordinate System and Circles Part 2: Circles.
Equations of Circles.
Lesson: 10 – 8 Equations of Circles
11.7 Circles in the Coordinate Plane
9.3 Graph and Write Equations of Circles
LT 11.8: Write equations and graph circles in the coordinate plane.
Objectives Write equations and graph circles in the coordinate plane.
The equation of a circle is based on the Distance Formula and the fact that all points on a circle are equidistant from the center.
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles in the Coordinate Plane
Circles and their parts
10.7 Write and Graph Equations of ⊙s
Chapter Equations of Circles.
Presentation transcript:

Then/Now You wrote equations of lines using information about their graphs. Write the equation of a circle. Graph a circle on the coordinate plane.

Concept

Example 1 Write an Equation Using the Center and Radius A. Write the equation of the circle with a center at (3, –3) and a radius of 6. (x – h) 2 + (y – k) 2 = r 2 Equation of circle (x – 3) 2 + (y – (–3)) 2 =6 2 Substitution (x – 3) 2 + (y + 3) 2 = 36Simplify. Answer: (x – 3) 2 + (y + 3) 2 = 36

Example 1 Write an Equation Using the Center and Radius B. Write the equation of the circle graphed to the right. (x – h) 2 + (y – k) 2 = r 2 Equation of circle (x – 1) 2 + (y – 3) 2 =2 2 Substitution (x – 1) 2 + (y – 3) 2 = 4Simplify. Answer: (x – 1) 2 + (y – 3) 2 = 4 The center is at (1, 3) and the radius is 2.

Example 1 A.(x – 2) 2 + (y + 4) 2 = 4 B.(x + 2) 2 + (y – 4) 2 = 4 C.(x – 2) 2 + (y + 4) 2 = 16 D.(x + 2) 2 + (y – 4) 2 = 16 A. Write the equation of the circle with a center at (2, –4) and a radius of 4.

Example 2 Write an Equation Using the Center and a Point Write the equation of the circle that has its center at (–3, –2) and passes through (1, –2). Step 1Find the distance between the points to determine the radius. Distance Formula (x 1, y 1 ) = (–3, –2) and (x 2, y 2 ) = (1, –2) Simplify.

Example 2 Write an Equation Using the Center and a Point Step 2Write the equation using h = –3, k = –2, and r = 4. (x – h) 2 + (y – k) 2 = r 2 Equation of circle (x – (–3)) 2 + (y – (–2)) 2 =4 2 Substitution (x + 3) 2 + (y + 2) 2 = 16Simplify. Answer: (x + 3) 2 + (y + 2) 2 = 16

Example 5 Find the points of intersection between x 2 + y 2 = 16 and y = –x. A.(2, –2) B.(2, 2) C.(–2, –2), (2, 2) D.(–2, 2), (2, –2)