Kondo effect in charm/bottom nuclei International workshop on J-PARC hadron physics in Tokai, 2-4 Mar. 2016 Shigehiro Yasui Tokyo Institute of.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Diquarks in heavy baryons Atsushi Hosaka (RCNP, Osaka U. ) 9/10-13, 2013Charmed baryons1 Practical questions of hadron physics How ground and excited states.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
HL-5 May 2005Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-5) Collective excitations of nuclei photo-excitation of GDR particle-hole excitations.
Chiral symmetry breaking and structure of quark droplets
Exotic hadrons with heavy quarks May. Shigehiro Yasui KEK.
Su Houng Lee 1. Hadrons with one heavy quark 2. Multiquarks with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized.
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
1 Charm physics DN interactions in nuclear matter Clara Estela Jiménez Tejero National Nuclear Summer School 2007, Tallahassee, Florida Advisors: I. Vidaña,
Open charm mesons in a hot and dense medium1 L. Tolos 1, A. Ramos 2 and T. Mizutani 3 1 FIAS (University of Frankfurt) 2 Universitat de Barcelona 3 Virginia.
Nuclear Symmetry Energy from QCD Sum Rule Phys.Rev. C87 (2013) Recent progress in hadron physics -From hadrons to quark and gluon- Feb. 21, 2013.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Open-charm mesons in hot and dense matter L. Tolos 1, A. Ramos 2 and T. M. 3 1 FIAS (University of Frankfurt) 2 Universitat de Barcelona 3 Virginia Tech.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Anti-D and B meson in nuclear medium at zero temperature Shigehiro YASUI (KEK) Recent progress in hadron physics -From hadrons to quark and
Structure of the exotic heavy mesons Makoto Takizawa (Showa Pharmaceutical Univ.) Collaborators Sachiko Takeuchi (Japan College of Social Work) Kiyotaka.
The charmonium-molecule hybrid structure of the X(3872) Makoto Takizawa (Showa Pharmaceutical Univ.) Sachiko Takeuchi (Japan College of Social Work) Kiyotaka.
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
Su Houng Lee with Kie Sang Jeong 1. Few words on Nuclear Symmetry Energy 2. A QCD sum rule method 3. Preliminary results Nuclear Symmetry Energy from QCD.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Hadron Spectroscopy from Lattice QCD
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Munich, June 16th, 2010Exotic gifts of nature1 XIV International Conference on Hadron Spectroscopy J. Vijande University of Valencia (Spain) A. Valcarce,
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Interplay of antikaons with hyperons in nuclei and in neutron stars Interplay of antikaons with hyperons in nuclei and in neutron stars 13th International.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Quark Nuclear Physics or A theory of baryon resonances at large N c Dmitri Diakonov, Victor Petrov and Alexey Vladimirov Petersburg Nuclear Physics Institute,
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
1 Meson mass in nuclear medium Su Houng Lee Thanks to: Hatsuda + former collaborators + and to Kenji Morita(GSI) and Taesoo Song(A&M) 1.Phase transition,
1 Heavy quark system near Tc Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim, W.S. Park, H. Park,
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Charm quark in nuclear systems Strangeness and charm hadron Tokai, 3-7 Aug S. Yasui Tokyo Tech.
1 Keitaro Nagata and Atsushi Hosaka Research Center for Nuclear Physics, Osaka Univ. Quark-Diquark approach for the nucleon and Roper resonance Workshop.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Recent results from QCD sum rule analyses based on the maximum entropy method International Symposium on Chiral Symmetry in Hadrons and
Su Houng Lee 1. Few words on a recent sum rule result 2. A simple constituent quark model for D meson 3. Consequences 4. Summary D meson in nuclear medium:
“QCD Kondo effect” in dense quark matter
Shigehiro Yasui Tokyo Institute of Technology
Tcc and double charm production
“QCD Kondo effect” KH, K. Itakura, S. Ozaki, S. Yasui,
Doubly charmed mesons from hadronic molecules
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
mesons as probes to explore the chiral symmetry in nuclear matter
Exotic charmed four-quark mesons: molecules versus compact states
Kernfysica: quarks, nucleonen en kernen
d*, a quark model perspective
有限密度・ 温度におけるハドロンの性質の変化
Charmonium spectroscopy above thresholds
Interpretation of the observed hybrid candidates by the QGC Model
Yukawa Institute for Theoretical Physics
Theory on Hadrons in nuclear medium
Presentation transcript:

Kondo effect in charm/bottom nuclei International workshop on J-PARC hadron physics in Tokai, 2-4 Mar Shigehiro Yasui Tokyo Institute of Technology arXiv: [hep-ph]

1. Hadron-nucleon interaction 1. Multi-flavor nucleus Nucleus + Strangeness 2. Hadron in medium 3. Nuclear structure Impurity physics

1. Hadron-nucleon interaction 1. Multi-flavor nucleus Nucleus + Charm 2. Hadron in medium 3. Nuclear structure Mass hierarchy (m c >>Λ QCD ) ~1.2 GeV ~0.2 GeV Impurity physics ??? S. H. Lee’s talk D. Suenaga’s talk

Nucleus D, D* q c 1. Multi-flavor nucleus - Binding energy - Dispersion relation - Spectral function - Reaction - Restoration of χSB - Nuclear structure - etc. Kondo effect : quantum impurity physics Charm nucleus mass spectroscopy

Contents 1. Multi-flavor nucleus 2. Kondo effect 2.1 What’s Kondo effect? 2.2 Kondo effect in atomic nuclei (mean-field + RPA) 3. Conclusion F. Takano, T. Ogawa, Prog. Theor. Phys. 35, 343 (1966) A. Yoshimori, A. Sakurai, Suppl. Prog. Theor. Phys. 46, 162 (1970) M. Eto, Y. V. Narazov, Phys. Rev. B 64, (2001) bulk systemsfinite systems This work Mean-field approach to Kondo effect

2. Kondo effect J UN K ONDO (1930-)

2.1 What’s Kondo effect? Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) Log T/T K (quantum) T 2 (classical) T K : Kondo temperature Impurity atom with spin ½ with T a ・ T a interaction electron metal T 1,..., T n^2-1 : generators of SU(n) (n=2 for spin ½) impurity spin electron spin “Kondo bound state”

3 2 1Fermi surface (particle-hole creation) Loop effect Non-Abelian int. (SU(n) symmetry) Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) 2.1 What’s Kondo effect? Heavy impurity impurity fermion

2.1 What’s Kondo effect? Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) Scattering amplitude at tree and one-loop levels k, l, i, j=↑, ↓ in SU(n) (n=2 for spin ½) T 1,..., T n^2-1 : generators of SU(n) Log E divergence for infrared limit (E→0) for any small coupling E: energy from Fermi surface impurity atom electron → Logarithmic divergence in resistance of electron ++ electron hole k l i j l j l j k i k i (T a ) kl (T a ) ij interaction

2.1 What’s Kondo effect? nucleon D, B meson “Isospin Kondo effect” u,d,s quark c, b quark “Color (QCD) Kondo effect” ① nuclear matter ② nucleon-hole loop ③ isospin SU(2) symmetry ① quark matter ② quark-hole loop ③ color SU(3) symmetry Application to nuclear/quark matter NJL-type: S.Y., K.Sudoh, Phys. Rev. C88, (2013) QCD: K. Hattori, K. Itakura, S. Ozaki, S. Y., Phys. Rev. D92, (2015) (τ a ) kl (τ a ) ij interaction(λ a ) kl (λ a ) ij interaction Cf. “Magnetic catalysis QCD Kondo effect” S. Ozaki, K. Itakura, Y. Kuramoto, arXiv:1509:06966 [hep-ph]

2.1 What’s Kondo effect? Application to nuclear/quark matter nucleon D, B meson “Isospin Kondo effect” u,d,s quark c, b quark “Color (QCD) Kondo effect” NJL-type: S.Y., K.Sudoh, Phys. Rev. C88, (2013) QCD: K. Hattori, K. Itakura, S. Ozaki, S. Y., Phys. Rev. D92, (2015) What’s about in atomic nuclei? (finite size nuclear systems) ① nuclear matter ② nucleon-hole loop ③ isospin SU(2) symmetry ① quark matter ② quark-hole loop ③ color SU(3) symmetry (τ a ) kl (τ a ) ij interaction(λ a ) kl (λ a ) ij interaction Cf. “Magnetic catalysis QCD Kondo effect” S. Ozaki, K. Itakura, Y. Kuramoto, arXiv:1509:06966 [hep-ph]

2.2 Kondo effect in atomic nuclei D meson Simple model for atomic nucleus Purpose: the ground state energy? k = 123N nucleon sector (N states) ↑/↓ for proton/neutron D sector εkεk kinetic term Kondo (isospin-flipping) interaction c kσ : annihilation operator for nucleon in level k and isospin σ T +, T -, T 3 : isospin operator for D meson HKHK à la Lipkin model Cf. π-exchange interaction: S.Y., K.Sudoh, Phys. Rev. D80, (2009)

2.2 Kondo effect in atomic nuclei Exact solution Case of nucleon #=1 singlet w.f. linear algebraic equation solution !! ε ε-3Ng/2 : “Kondo bound state” (superposed state of nucleons and D meson) k’ = 123N Simple case: ε k =ε ε k = 123N

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Step 2. Introduce Lagrange multiplier λ Step 4. Variation by λ and Δ Step 3. Apply mean-field (Δ) approx. “gap” color singlet Step 1. Introduce auxiliary fermion fields f σ (SU(2)) auxiliary fermion # constraint fermion # 0, 2 fermion # 1 physical space How does it work?

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Step 2. Introduce Lagrange multiplier λ Step 4. Variation by λ and Δ Step 3. Apply mean-field (Δ) approx. “gap” color singlet Step 1. Introduce auxiliary fermion fields f σ (SU(2)) auxiliary fermion # constraint fermion # 0, 2 fermion # 1 physical space

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: ε k =ε N↑N↑ N↑N↑ D↑D↑ N↓N↓ N↓N↓ D↓D↓ N↑N↑ N↑N↑ D↑D↑ N↓N↓ N↓N↓ D↓D↓ Diagonalization (next page) MatrixBasis ε k = 123N Step 3 Attraction by N-D mixing (Δ) ↓ New ground state

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: ε k =ε Diagonalized matrix New basis lowest energy (↑) lowest energy (↓) ε k = 123N Step 3 Linear combination of (coherent) nucleon and D meson

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: ε k =ε Diagonalized matrix Variation by lowest energy (↓) lowest energy (↑) ε k = 123N Step 3 Step 4 “ Kondo bound state ” Binding energy (MF): Ng different form exact solution 3Ng/2?

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: ε k =ε ① Mean-value of auxiliary fermion number is one. ε k = 123N ② Fluctuation effect (random-phase approximation; RPA) Binding energy (MF+RPA): 1.378Ng close to exact solution 3Ng/2=1.5Ng!! zero-point energy in H.O. potential

2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: ε k =ε ③ Violation of isospin symmetry (application) ε+δε ε k = 123N ε ↑ =ε+δε, ε ↓ =ε Δ=0 at δε=4Ng E MF =ε at δε=4Ng Δ δε 4Ng0

3. Conclusion 2. We apply the mean-field + RPA approach to the ground state in a simple model in success. 1. We study the ground state of charm nucleus (D meson) with isospin Kondo effect. Future works: 1. Application to realistic D meson-nucleon interaction. 2. Effect by nuclear shell effects/collective modes. 3. Observables for experiments. 4. etc. 3. This method can be applied to realistic nuclear structure with charm/bottom hadron. Isospin-dependent interaction x Nuclear system with D meson = “Kondo bound state”

References S.Y., K.Sudoh, Phys. Rev. D80, (2009) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D84, (2011) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D85, (2013) Y.Yamaguchi, S.Y., A.Hosaka, Nucl. Phys. A927, 110 (2014) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D87, (2013) S.Y., K.Sudoh, Y.Yamaguchi, S.Ohkoda, A.Hosaka, T.Hyodo, Phys. Lett. B727, 185 (2013) Y.Yamaguchi, S.Ohkoda, T.Hyodo, A.Hosaka, S.Y., Phys. Rev. D91, (2015) HQS doublet/singlet in exotic hadrons and nuclei D ( * ) N, D ( * ) NN hadronic molecules D ( * ) N hadronic molecules S.Y., K.Sudoh, Phys. Rev. C89, (2014) NLO in 1/m Q expansion for D ( * ) in nuclear matter D ( * ) in nuclear matter and Kondo effects S.Y., K.Sudoh, Phys. Rev. C87, (2013) S.Y., K.Sudoh, Phys. Rev. C88, (2013)

[6] K. Tsushima, D. -H. Lu, A. W. Thomas, K. Saito and R. H. Landau, Phys. Rev. C 59, 2824 (1999). [7] A. Sibirtsev, K. Tsushima and A. W. Thomas, Eur. Phys. J. A 6, 351 (1999). [15] T. Hilger, R. Thomas and B. Kampfer, Phys. Rev. C 79, (2009). [16] T. Hilger, R. Schulze and B. Kampfer, J. Phys. G G 37, (2010). [17] Z. -G. Wang and T. Huang, Phys. Rev. C 84, (2011). [18] A. Mishra, E. L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm and H. Stoecker, Phys. Rev. C 69, (2004). [19] M. F. M. Lutz and C. L. Korpa, Phys. Lett. B 633, 43 (2006). [20] L. Tolos, A. Ramos and T. Mizutani, Phys. Rev. C 77, (2008). [21] A. Mishra and A. Mazumdar, Phys. Rev. C 79, (2009). [22] A. Kumar and A. Mishra, Phys. Rev. C 81, (2010). [23] C. E. Jimenez-Tejero, A. Ramos, L. Tolos and I. Vidana, Phys. Rev. C 84, (2011). [24] A. Kumar and A. Mishra, Eur. Phys. J. A 47, 164 (2011). [25] C. Garcia-Recio, J. Nieves, L. L. Salcedo and L. Tolos, Phys. Rev. C 85, (2012). [26] S. Yasui, K. Sudoh, Phys. Rev. C87, (2013). [27] A. Hayashigaki, Phys. Lett. B487, 96 (2000) [28] K. Suzuki, P. Gubler, M. Oka, Pos Hadron2013, 179 (2014). [29] K. Azzi, N. Er, H. Sundu, Eur. Phys. J. C74, 3021 (2014). Quark-meson coupling modelQCD rum rule Mean field WT-type coupling Hadron dynamics π exchange -50 MeV [27] [26] -66 MeV [29] +30 MeV [28] 1. Multi-flavor nucleus D (B) meson in nuclear matter Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction),... Binding energy [MeV] ~ a few ten MeV (Repulsive? Attractive?)