LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O.

Slides:



Advertisements
Similar presentations
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
Advertisements

Fast and Precise Beam Energy Measurement at the International Linear Collider Michele Viti.
Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
ECFA-DESY workshop, NIKEF 1 st April, 2003Nick Walker, DESY Energy Spread Measurement in the TESLA Extraction Line Nick Walker - DESY.
Zero Degree Extraction using an Electrostatic Separator Take another look at using an electrostatic separator and a weak dipole to allow a zero degree.
Summary of wg2a (BDS and IR) Deepa Angal-Kalinin, Shigeru Kuroda, Andrei Seryi October 21, 2005.
Stanford – Mar , 2005 LCWS-2005 Norbert Meyners Upstream Polarimetry with 4-Magnet Chicane 1 Introduction & Overview O Compton polarimetry basics.
NLC - The Next Linear Collider Project  IR background issues and plans for Snowmass Jeff Gronberg/LLNL Linear Collider Workshop October 25, 2000.
Super-B Factory Workshop January 19-22, 2004 IR Upgrade M. Sullivan 1 PEP-II Interaction Region Upgrade M. Sullivan for the Super-B Factory Workshop Hawaii.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
IPBI 6 April 05Ken Moffeit Polarimetry Design Updates - Dispersion in upstream chicane - 20mrad extraction line 0.75 mrad beam stay clear location of Synchrotron.
27 June 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit ILC BDS 27 June 06.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
20 March 2005Ken Moffeit LCWS1 Highlights from the MDI workshop Spin Rotation System for 2 IR’s Downstream polarimetry Ken Moffeit.
2 February 2005Ken Moffeit Spin Rotation scheme for two IRs Ken Moffeit SLAC.
Electron and Ion Spin Dynamics in eRHIC V. Ptitsyn Workshop on Polarized Sources, Targets and Polarimetry Charlottesville, VA, 2013.
Prajwal T. Mohan Murthy Laboratory for Nuclear Science, MIT νDM Group Spin-Light Polarimeter for the Electron Ion Collider EIC Users Meeting 2014 Jun 2014.
The Detector and Interaction Region for a Photon Collider at TESLA
IP crossing-angle and LC technology recommendation Philip Bambade LAL, Orsay 5 th ITRP meeting, Caltech, USA Session on detector & physics issues June.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
Beam Delivery System Review of RDR(draft) 1.Overview 2.Beam parameters 3.System description 3.1 diagnostic, tune-up dump, machine protection MPS.
Photon Collider at CLIC Valery Telnov Budker INP, Novosibirsk LCWS 2001, Granada, Spain, September 25-30,2011.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Summary of the Working Groups - Polarization -  Technical Aspects Conveners: Gudrid Moortgat-Pick,Louis Rinolfi, Sabine Riemann, Valery Telnov International.
Beijing, Feb 3 rd, % e+ Poalarization 1 Physics with an initial positron polarisation of ≈30% Sabine Riemann (DESY)
ILC BCD Crossing Angle Issues G. A. Blair Royal Holloway Univ. London ECFA ILC Workshop, Vienna 14 th November 2005 Introduction BCD Crossing Angle Rankings.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
1 Options for low energy spin manipulation Ken Moffeit, SLAC 2009 Linear Collider Workshop of the Americas 29 September to 3 October 2009 K. Moffeit, D.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
LCWS2004 Paris 1 Beam background study for GLC Tsukasa Aso, Toyama College of Maritime Technology and GLC Vertex Group H.Aihara, K.Tanabe, Tokyo Univ.
19 July 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit (via Eric Torrence) VLCW06 19 July 06.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Philip Bambade - LALLCWS04 - MDI 20/4/20041 Crossing-angle-or-not physics implications report from phone-meeting cold half-angle = 10, 4, 1, 0.3,……
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
1 O. Napoly ECFA-DESY Amsterdam, April 2003 Machine – Detector Interface : what is new since the TDR ? O. Napoly CEA/Saclay.
EIC Users Meeting, SBU, 6/27/14 Polarized Electron Beams in the MEIC at JLab Fanglei Lin for MEIC Study Group EIC Users Meeting, Stony Brook University,
NLC - The Next Linear Collider Project Tor Raubenheimer Beam Delivery System Design Differences American Linear Collider Physics Meeting SLAC January 8.
Ken Moffeit SLAC LCWA09 1 Polarization Considerations for CLIC Ken Moffeit, SLAC 2009 Linear Collider Workshop of the Americas 29 September to 3 October.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
For Layout of ILC , revised K.Kubo Based on following choices. Positron source: Prepare both conventional and undulator based. Place the.
29/10/09 Positron Workshop 1 Working Assumptions for Low Energy Operations Jim Clarke ASTeC & Cockcroft Institute Daresbury Laboratory.
1 O. Napoly ECFA-DESY Amsterdam, April 2003 Machine – Detector Interface : what is new since the TDR ? O. Napoly CEA/Saclay.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
Plan for 500 GeV Development Vadim, Mei. Goals 1.Explore polarization transmission to the 500 Gev CM energy. 2. Inspect the luminosity aspects (with 2.
BINP tau charm plans and other projects in Turkey/China A. Bogomyagkov BINP SB RAS, Novosibirsk.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
MAIN DUMP LINE: BEAM LOSS SIMULATIONS WITH THE TDR PARAMETERS Y. Nosochkov E. Marin, G. White (SLAC) LCWS14 Workshop, Belgrade, October 7, 2014.
1 Updated comparison of feedback implementation for e + e - and e - e - modes of operation with realistic errors in the BDS M. Alabau Pons, P. Bambade,
Full-Acceptance & 2 nd Detector Region Designs V.S. Morozov on behalf of the JLEIC detector study group JLEIC Collaboration Meeting, JLab March 29-31,
1 April 1 st, 2003 O. Napoly, ECFA-DESY Amsterdam Design of a new Final Focus System with l* = 4,5 m J. Payet, O. Napoly CEA/Saclay.
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
P. Chevtsov for the ELIC Design Team
Overview of Polarimetry
Electron Polarization In MEIC
At a Future Linear Collider
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
ILC Baseline Design: Physics with Polarized Positrons
Yu.N. Filatov, A.M. Kondratenko, M.A. Kondratenko
IR/MDI requirements for the EIC
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Summary and Plan for Electron Polarization Study in the JLEIC
Presentation transcript:

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O Compton Polarimetry O The TDR Baseline Compton Polarimeter O Downstream (Extraction Line) Studies Polarimeter Concept for NLC Beam-Beam Depolarization Effects

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 2 Spin Motion Spin vector must be vertical in the damping ring Spin Rotator in the transfer line to the linac: manipulate spin direction for any desired orientation at the experiment must compensate all technical spin rotation effects along the machine requires fast polarimeter at the high-energy end for efficient tune-up

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 3 Spin motion along the accelerator

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 4 Suitable Polarimeter Locations most favorable upstream location: z = m  can use beam line magnets as spectrometer elements  has excellent infrastructure for polarimetry

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 5 Alignment Tolerances Beam-Beam Effects  tight, but within machine tolerances  estimated depolarization:  0.25%  upstream polarimetry should be ok 

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 6 Compton Polarimetry Kinematics

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 7 Compton Polarimetry Cross Sections, Spin Asymmetries - 1 < P < < < + 1

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 8

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 9 The TDR Baseline Compton Polarimeter Layout of the configuration

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 10 luminosity for pulsed lasers ( with finite laser crossing angle)

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 11 Laser parameters laser schematic of TTF injector gun: operates at nominal pulse &  -bunch pattern of TESLA

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 12 Laser for TTF injector gun S. Schreiber et al. NIM A 445 (2000) 427  t = 8 ps

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 13 electron detector: gas Cerenkov calibration scheme (proposed)

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 14 The Ellerhoop Campus The TDR Baseline Compton Polarimeter

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 15 The TDR Baseline Compton Polarimeter Summary table For details: V. Gharibyan, N. Meyners, K.P. Schüler, LC-DET

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 16 Downstream (Extraction Line) Studies for TESLA single beam polarimetry:  feasible beam-beam polarimetry:  impossible for TESLA at zero crossing angle issues to address:  laser beam topology  detector location  degraded beam halo

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 17 Downstream (Extraction Line) Studies

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 18 Downstream ( Extraction Line ) Studies: Laser Beam Topology 9 90° 100 mrad Laser (100 mrad) Laser (90°)

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 19 Downstream (Extraction Line) Studies Detector at z = 65 m

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 20 Downstream (Extraction Line) Studies 250 GeV nominal disrupted beam: events from N. Walker, distributions at e+e- IP

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 21 Downstream (Extraction Line) Studies Extrapolated background For standard 20 mm x 20 mm collimator aperture

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 22 Downstream (Extraction Line) Studies green laser, head-on collision

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 23 Conclusions TDR Baseline Polarimeter (630 m upstream)  Precision of 0.5% should be straightforward, 0.25% may be possible with corrections  Works equally well for e- and e+  Excellent infrastructure, robust facility  Very fast Downstream (Extraction Line) Studies  Single beam polarimetry appears feasible  Disrupted beam polarimetry is impossible for TESLA beam extraction (with zero crossing angle geometry)

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 24

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 25 Beam-Beam Depolarization: Kathleen Thompson: SLAC-PUB-8761 (Jan. 2001) (see also Yokoy & Chen: SLAC-PUB-4692) NLC-500: outgoing e- depolarization: BMT ST TOTAL BMT ST TOTAL (analytic results) (simulation results) NLC-A 0.6% 0.4% 1.1% 0.4% 0.5% 0.9% NLC-B 0.8% 0.4% 1.1% 0.5% 0.4% 0.9% NLC-C 0.9% 0.3% 1.1% 0.5% 0.3% 0.9% NLC-500: luminosity-weighted e- beam depolarization: BMT ST TOTAL BMT ST TOTAL (analytic results) (simulation results) NLC-A 0.2% 0.1% 0.3% 0.1% 0.1% 0.2% NLC-B 0.2% 0.1% 0.3% 0.1% 0.1% 0.2% NLC-C 0.2% 0.1% 0.3% 0.1% 0.1% 0.2%  P (downstream)  4 x  P (lumi-weighted)  Upstream value is much closer to lumi-weighted polarization!

LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 26 Summary on beam-beam effects Upstream polarimeter expected to measure  0.2% higher than lumi-weighted value Downstream polarimeter expected to measure  0.9% lower than upstream, and  0.7% lower than lumi-weighted value upstream vs downstream polarimetry Therefore, for the typical case with both beams interacting, an upstream polarimeter measurement will need less correction. However, only a downstream polarimeter can measure the actual degree of depolarization, by comparison btw interacting and non-interacting (single beam) bunch data.