1 SLHiPP2013 meeting – Louvain la Neuve Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 11 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33.

Slides:



Advertisements
Similar presentations
1 Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud Orsay cedex Tél. : Fax :
Advertisements

Juliette PLOUIN – CEA/SaclayCARE’08, 3 December /21 Superconducting Cavity activities within HIPPI CARE ‘08 CERN, 2-5 December 2008 Juliette PLOUIN.
 Outline: ◦ 325 MHz Superconducting Spoke Resonators in the Project X Linac (HINS front end). ◦ SSR1 Single Spoke Resonator with β g =.21: Fabrication.
First international Design Review of the MYRRHA accelerator. Spoke Cryomodule Design Bruxelles- 12/13 November 2012 First international Design Review of.
Rosier Ph. – IPNO – Detector Dpt. – 27/05/2011APRIME HPS collaboration meeting 1/24 1- Vacuum chamber proposal 1.1- Stainless steel chamber design and.
MICE RF Cavity Design and Fabrication Update Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 27, 2004.
Progress on the MICE 201 MHz Cavity Design Steve Virostek Lawrence Berkeley National Lab RF Working Group Fermilab August 22, 2007  automatic.
G. Olry for the IPN Orsay team 5 th SPL collaboration meeting, 25-26/11/2010, CERN.
G. Olry, H-M Gassot, S. Rousselot (IPN Orsay) EuCARD-SRF annual review 2011, 4-5 May, IPN, Orsay Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud.
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
Spoke Cryomodules (WP4) Guillaume OLRY (CNRS/IPN Orsay) WP4 Deputy Leader April 21, 2015.
Cavity design Fundamental parameters : frequency, beta, number of cells (gaps), Eacc Optimisation : R/Q, surface fields / Eacc, Qex, damping of HOMs, kloss,
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
ESS cavities interfaces
Page 1 Jean Delayen HyeKyoung Park Center for Accelerator Science Department of Physics, Old Dominion University and Thomas Jefferson National Accelerator.
FNAL Meeting, July 2006 Basti, Bedeschi, Raffaelli, INFN-Pisa 1 ILC cryomodule mechanical work at INFN-Pisa  Ongoing work  Near term future  Manpower.
Cavity status; recent KEK activities : Hayano (1) STF CM-1 cavities are; MHI-014: 3-rd VT:36MV/m (finished) MHI-015: 3-rd VT: > 18.4MV/m.
KEKB Crab Development K. Hosoyama (KEK) Crab Cavity for HER Crab Cavity for LER Crab Cavity for KEKB History of Crab Cavity R&D Characteristics of Crab.
RFCC Module Design Update  automatic tuners  cavity suspension  cavity installation Steve Virostek Lawrence Berkeley National Lab MICE Collaboration.
Stress and cool-down analysis of the cryomodule Yun He MLC external review October 03, 2012.
ELECTROMAGNETIC, THERMAL, AND STRUCTURAL ANALYSIS OF RF CAVITIES USING ANSYS 2.1 GHz 3-Cell Cavity Cliff Brutus 7/9/15 Workbench Job Name: 2.1ghz_Symmetry_
The design of elliptical cavities Gabriele Costanza.
Compatibility in the ILC ML. 主なデザインと相違点 BCD ( TTF) STF-BL その他 空洞、シー ル Φ 78 mm ビームパイ プ、アルミヘキサゴ ン Φ 80 mm ビームパイ プ、インジウムヘリ コ LL, Re 入力カプ ラー TTF-III 円筒セラミック窓.
Stress and Cool-down Analysis Yun HE MLC Internal Review 9/5/2012Yun HE, MLC Internal Review1.
704MHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL July 8, 2015 LEReC Warm Cavity Review Meeting  July 8, 2015.
Dr G Burt (CI), Dr R. Rimmer (Jlab), H. Wang (Jlab) & B. Hall (CI)
18/04/12 Arnaud ACKER Mechanical Analysis of RF Network 1/14 CLIC Two-Beam Module type 0.RF Network. Drive-Beam Main-Beam.
1 Spoke cavities for ESS and MYRRHA G. Olry, P. Duchesne (IPN Orsay) SLHiPP-2, 3-4 May 2012, Catania.
Status of Activities at CERN
2.1 GHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL June 15, 2015 LEReC Warm Cavity Review Meeting  June 15, 2015.
I. Ben-Zvi Update Ilan Ben-Zvi for the Stony Brook, BNL and AES SPL teams Presented by Rama Calaga.
Test plan for SPL short cryomodule O. Brunner, W. Weingarten WW 1SPL cryo-module meeting 19 October 2010.
Group 6 / A RF Test and Properties of a Superconducting Cavity Mattia Checchin, Fabien Eozénou, Teresa Martinez de Alvaro, Szabina Mikulás, Jens Steckert.
56 MHz SRF Cavity Cryostat support system and Shielding C. Pai
56 MHz SRF Cavity Thermal Analysis and Vacuum Chamber Strength C. Pai
56 MHz SRF Cavity and Helium vessel Design
SPL cavity design by IPN Orsay Guillaume OLRY November rd SPL collaboration meeting.
Cavity support scheme options Thomas Jones 25/06/15 1.
HiLumi-LHC/LARP Crab Cavity System External Review – May Work partly supported by the EU FP7 HiLumi LHC grant agreement No and by the.
The Superconducting cavities of the European Spallation Source Superconducting Technologies Workshop CERN – 4 & 5 December 2012 Sébastien Bousson (CNRS/IN2P3/IPN.
ESS AD RETREAT 5 th December 2011, Lund “A walk down the Linac” SPOKES Sébastien Bousson IPN Orsay.
Adam Carreon July 19, 2012 Technical Division SRF Department Dressed SSR1 Cavities.
Mechanical design considerations for beta=1 cavities OC, 28/July/20111SRF2011 Chicago O. Capatina, S. Atieh, I. Aviles Santillana, G. Arnau Izquierdo,
7th SRF Materials Workshop FRIB SRF Cavities 7/16/12 Chris Compton.
11/12/2013P. Bosland - AD-retreat - Lund Designs of the Spoke and Elliptical Cavity Cryomodules P. Bosland CEA/Saclay IRFU On behalf of the cryomodule.
H-ECCTD KICK-OFF DESCRIPTION AND CHALLENGES 16/03/2016 F. PEAUGER.
Engineering Design of Raon SC Cavities Myung Ook Hyun SCL Team Myung Ook Hyun SCL Team.
Cavity Supporting Scheme Paulo Azevedo, CERN – TE/MSC SPL Conceptual Review, 04/11/2010.
SC cavity development for IHEP Jianping Dai RF group, Accelerator Center, IHEP International Review Meeting on C-ADS Acc. Phys. Design, Sept. 19~20,
RISP SSR1 Design - `Balloon’ TRIUMF/PAVAC
Design Status of the Spoke Cryomodule for MYRRHA SLHIPP Louvain la Neuve 17-18/04/2013 Design Status of the Spoke Cryomodule for MYRRHA SLHIPP Louvain.
F LESEIGNEUR / G OLIVIER LUND January 9th, ESS HIGH BETA CRYOMODULE ESS CRYOMODULE STATUS MEETING HIGH BETA CRYOMODULE LUND JANUARY 9TH, 2013 Unité.
Spoke Cavities developments in Europe CNRS/IN2P3/ IPN– Paris-Sud University Sébastien Bousson On behalf of the IPNO team.
Guillaume Olry on behalf the IPN Orsay SPIRAL2 team TTC Meeting – Milan, 28 Feb-3 March 2011.
Status of the beta=0.65 cavity RF desigN
Stress and cool-down analysis of the cryomodule
Status of developments at CEA-Saclay
Crab Cavity HOM Coupler Specification Drawings & Tolerances
LINAC AG • IAP • Goethe Universität Frankfurt
VERTICAL TEST RESULTS OF SPOKE RESONATOR AT IPNO
SC spoke cavity for China-ADS 3~10MeV injector
Erice Lecture 2 Padamsee
Development of the SRF Cavity Design for the Cooler ERL
RAPPEL TITRE PRESENTATION
Case study 6 Properties and test of a Superconducting RF cavity
Challenges, Progress and Plans of SRF CH-Structures
FLUX TRAPPING STUDIES ON LOW BETA CAVITIES
HWR and Test Cryomodule for China ADS
Presentation transcript:

1 SLHiPP2013 meeting – Louvain la Neuve Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud Orsay cedex Tél. : Fax : Single Spoke Cavity  = 0.37 for MYRRHA (RF AND ) M ECHANICAL S TUDIES Guillaume OLRY Patricia DUCHESNE

2 SLHiPP2013 meeting – Louvain la NeuveContents 1.Description of the cavity and its helium vessel 1.1 Cavity 1.2 Helium vessel 1.3 Assembly 2.RF design 2.1 Starting points 2.2 RF parameters 3.Static calculations 3.1 Description of the different loaded cases 3.2 Leak test of the cavity without helium vessel 3.3 Leak test of the cavity with its helium vessel 3.4 Pressure sensitivity in the cryomodule 3.5 Mechanical-vibration modes 4.RF-Mechanical coupled simulations 4.1 RF parameters 4.2 Sensitivity for cavity tuning 4.3 Helium bath pressure fluctuation 4.4 Lorentz forces detuning factor

3 SLHiPP2013 meeting – Louvain la Neuve 1.1 Cavity 1. Description of the cavity and its helium vessel  RF Design: 2-gap Spoke cavity defined by RF analysis (with CST Microwave Studio)  Material: 3-mm thick bulk Niobium Donut stiffener (x2) Spokebase stiffener (x2) Pick-up probe port  int = 56mm Fundamental Coupler port  int = 56mm 580 mm  int 485 mm Total weight : 42 Kg  int = 56mm

4 SLHiPP2013 meeting – Louvain la Neuve 1.2 Helium vessel 1. Description of the cavity and its helium vessel  Material: 3-mm thick Titanium grade 2 CODAP: P allowable = 0,30 MPa P allowable = Roark formula: Pcrit = E = Young modulus e = thickness L = free length v = Poisson coef. r = cylinder radius Pcrit = 0,74 MPa  int 530 mm 534 mm Supports for Cold Tuning System (CTS) (x4) Bracket for supporting in the cryomodule (x4) Pick-up Flange Coupler Flange Helium Flange Ring stiffener Total weight : 22 Kg Buckling analytical calculation

5 SLHiPP2013 meeting – Louvain la Neuve 1.3 Assembly 1. Description of the cavity and its helium vessel Welded connections 1 Bellows Welded connections Total weight : ~70 Kg

6 SLHiPP2013 meeting – Louvain la Neuve 2.1 Starting points 2. RF design SPOKE BAR GEOMETRY : feedback from the two Single-Spoke resonators and the Triple-Spoke resonator fabrication (EURISOL) Spoke bar base (H field area): no racetrack shape  3D weld seams are not easy (Spoke bar-to-cavity body connection) no cylindrical shape  Hpk too high  Conical shape is chosen Spoke bar center (E field area):  racetrack shape is ok

7 SLHiPP2013 meeting – Louvain la Neuve 2. RF design GOALS Epk/Eacc < 4.4 Bpk/Eacc (mT/MV/m) < 8.3 CST MicroWave Studio 2012 Model created with the 3D CAD tools of MWS Symetries: ¼, BC: Magnetic planes, Tetrahedral mesh, Nb tetrahedrons~ st mode calculated (TM010) Optimisation of a dozen parameters 2.2 RF parameters [1]

8 SLHiPP2013 meeting – Louvain la Neuve 2. RF design 3.1 RF parameters Epk Lcav=435mm Bpk Optimized RF parameters Frequency [MHz]352.2 Optimal beta0.37 Vo.T 1 Joule & optimal beta0.693 Epk/Ea4.29 Bpk/Ea [mT/MV/m]7.32 G [Ohm]109 r/Q [Ohm]217 2K for Rres=20 nΩ5.2 E+09 Pcav for Qo=2 E+09 & 6.4 MV/m [W] RF parameters [1] Qext~2.2E+06  port=56mm, Z=50Ω

9 SLHiPP2013 meeting – Louvain la Neuve Leak tests during fabrication Bare cavity (=1st fabrication step) Cavity with its helium vessel (=Cavity completed)  Keep stresses < 50 MPa Test inside the cryomodule Cooling down at 4K  Define the critical pressure during cool down process Mechanical-vibration modes analysis  Check sensitivity to microphonics Frequency shift by pulling on beam tubes  Define the sensitivity for the tuning system Helium bath pressure fluctuation RF sensitivity due to the Lorentz forces  Define a range for the pressure and Lorentz detuning factors 3.1. Description of the different loaded cases 3. Static calculations Bare cavity Jacketed cavity

10 SLHiPP2013 meeting – Louvain la Neuve 3. Static calculations Uz max = 0.32 mm On cavity end-cups : 42 MPa 3.2 Leak test of the cavity without helium vessel (1 bar external load) Without ring stiffenerWith ring stiffener On cavity end-cups : 30 MPa Donut ribs: 63 MPa max Ring ribs: 65MPa max Uz max = 0.2 mm Donut ribs: 60 MPa max > 50 MPa Max stress on cavity walls < Yield stress limit

11 SLHiPP2013 meeting – Louvain la Neuve 3.3 Leak test of the cavity with its helium vessel Cavity under vacuum/He vessel P=1barCavity P=1 bar/ Helium vessel under vacuum Uz max = 0.19 mm On one cavity end- cup : 27 MPa Donut ribs: 67 MPa Uz max = 0.1 mm Uz max = 0.54 mm 35 MPa max stress at the spoke bar-to-rib junction Donut ribs: 65 MPa > 50 MPa 3. Static calculations Max stress on cavity walls < Yield stress limit

12 SLHiPP2013 meeting – Louvain la Neuve 3.4 Pressure sensitivity in the cryomodule Umax = 0.11 mm 30 MPa at the iris area Cavity with its helium vessel inside the cryomodule: o Cooling down (Helium bath at 4K) 0 bar in the cavity 1 bar in the helium vessel 0 bar in the cryomodule o Boundary conditions in the cryomodule Helium vessel maintained by 4 slideways Middle position fixed by an invar rod The CTS (Cold Tuning System) is free during the cooling down 35 MPa at the spoke bar-to-rib junction  The maximum pressure is around 1,6 bar ( Yield strength Re (Niobium) = 50 MPa) 3. Static calculations

13 SLHiPP2013 meeting – Louvain la Neuve 3.5 Mechanical-vibration modes Beam tubes boundary conditions: free-free ModeFrequencyLocation 1 & 2232 HzBeam tube at CTS side 3320 HzSpoke bar 4 & 5380 HzRF ports 6 & 7420 HzHelium vessel 8430 HzSpoke bar 9450 HzHelium vessel HzRF ports HzHelium vessel Hz2 beam tubes Mode 380 Hz Mode 232 Hz Mode 320 Hz Mode 500 Hz The 1 rst critical mode (mode 3) >> 50 Hz 3. Static calculations Critical modes in bold

14 SLHiPP2013 meeting – Louvain la Neuve 4.1 RF Parameters 4. RF-Mechanical coupled simulations ANSYS Frequency [MHz]352,2 Beta0.37 Bpk/Eacc [mT/(MV/m)]7,06 Epk/Eacc4.22 G [Ohm]109 r/Q [Ohms]217 Lacc = Ngap. . /2 [m] Temperature (K)2 Q 0 300K22313 Q 0 2K1.01*10 10

15 SLHiPP2013 meeting – Louvain la Neuve 4.2 RF Sensitivity for cavity tuning Tuning sensitivity  f/  z = 156 kHz/mm (*) Kcav >15 kN/mm 380 MPa / mm Remark : 0,13mm max allowable at ambient temperature CTS blocks *The CTS blocks are reinforced by stiff bars (not included in this model). Hence, we assume no possible rotation of the blocks. 4. RF-Mechanical coupled simulations

16 SLHiPP2013 meeting – Louvain la Neuve 4.3 Helium bath pressure fluctuation Nota: bandwith  f =160 Hz Sensitivity to He pressure Kp [ Hz/mbar] without CTS+7.65 Sensitivity to He pressure Kp [ Hz/mbar] with CTS+14 0 bar 1 bar 0 bar beam tube and CTS support rigidly linked along Z axis Without CTS With CTS The holding support of the cavity inside the cryomodule will have an influence on its deformation. Here, we only consider the coupler port fixed along Z axis. 4. RF-Mechanical coupled simulations

17 SLHiPP2013 meeting – Louvain la Neuve +14 Kp [ Hz/mbar] (fixed ends)+14 Cavity stiffness Kcav [kN/mm]16 Longitudinal sensitivity [kHz/mm] EVOLUTION OF K P 4.4 Helium bath pressure fluctuation FEM result with a specific CTS stiffness 4. RF-Mechanical coupled simulations

18 SLHiPP2013 meeting – Louvain la Neuve 4.5 Lorentz Forces detuning factor Lorentz Factor: K L =  f / E²acc For 8MV/m K L [Hz/(MV/m) 2 ] (without CTS)K L =-6.0  f = -384 Hz K L [Hz/(MV/m) 2 ] (with CTS)K L =-5.28  f = -338 Hz Without CTS With CTS Radiation pressure in Pa for 8MV/m In both cases, the coupler port is fixed along Z axis beam tube and CTS blocks linked along Z axis 4. RF-Mechanical coupled simulations

19 SLHiPP2013 meeting – Louvain la Neuve K L [Hz/(MV/m) 2 ] (fixed ends)-5.28 Cavity stiffness Kcav [kN/mm]16 Longitudinal sensitivity [kHz/mm] EVOLUTION OF K L 4.6 Lorentz Forces detuning factor FEM result with a specific CTS stiffness 4. RF-Mechanical coupled simulations

20 SLHiPP2013 meeting – Louvain la Neuve 5. Next… 1/ Design is finished 2/ Niobium ordered from NINGXIA for 1 cavity. Fabrication finished on 20th April / Detailed technical drawings of the cavity started 4/ Call for tender publication: July 2013