Holt Geometry 5-3 Medians and Altitudes of Triangles Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the.

Slides:



Advertisements
Similar presentations
GEOMETRY Medians and altitudes of a Triangle
Advertisements

 bisector m  BAE  m  EAC  bisect AD = BD, AD  DG, BD  DG  bisector m  ABG  m  GBC 16. (-2.5, 7)25.
Find each measure of MN. Justify Perpendicular Bisector Theorem.
Medians and Altitudes of Triangle
Medians and Altitudes 5-3 of Triangles Section 5.3
5-3 Concurrent Lines, Medians, Altitudes
5.4 Medians and Altitudes A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side. A triangle’s three medians.
Medians and Altitudes 5-4 of Triangles Warm Up Lesson Presentation
3.7—Medians and Altitudes of a Triangle Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of.
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of the segment with the given endpoints.
5-3 Medians and Altitudes of triangles
5.3 - Concurrent Lines, Medians, and Altitudes
Objectives To define, draw, and list characteristics of: Midsegments
Holt Geometry 5-3 Medians and Altitudes of Triangles Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the.
Warm-Up Find the area of each triangle
Median and Altitude of a Triangle Sec 5.3
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Lesson 12 – Points of Concurrency II
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Holt Geometry Medians and Altitudes of Triangles Entry Task 1. How do you multiply fractions? What is 2/3 * 1/5? Find the midpoint of the segment with.
Warm Up Announcements  Test Friday  Homework: TEXAS Practice Test Pg. 194.
Math 1 Warm-ups Fire stations are located at A and B. XY , which contains Havens Road, represents the perpendicular bisector of AB . A fire.
5-3: Medians and Altitudes (p. 10). Apply properties of medians of a triangle. Apply properties of altitudes of a triangle. Objectives: 5-3: Medians and.
 TEKS Focus:  (6)(D) Verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base.
Holt McDougal Geometry 5-3 Medians and Altitudes of Triangles 5-3 Medians and Altitudes of Triangles Holt Geometry Warm Up Warm Up Lesson Presentation.
Section 5-3 Medians and Altitudes of Triangles. A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the.
1. Given ABC is congruent to XYZ, AB = 30, BC = 45, AC = 40, XY = 5x + 10 and XZ = 3y + 7, find x and y. 2. Draw and label triangles JKL and XYZ. Indicate.
Holt Geometry 5-3 Medians and Altitudes of Triangles 5-3 Medians and Altitudes of Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Objectives Apply properties of medians and altitudes of a triangle.
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of the segment with the given endpoints.
5-4 Medians and Altitudes
Medians and Altitudes 5-2 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5.3.
Chapter 5 Lesson 3 Objective: To identify properties of medians and altitudes of a triangle.
Objectives Apply properties of medians and altitudes of a triangle.
Medians and Altitudes of a Triangle
Special Segments in Triangles
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? incenter.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
5-4 Medians and Altitudes
5-4 Medians and Altitudes
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
8.3 Medians and Altitudes of Triangles
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
5-3: Medians and Altitudes of Triangles
Learning Target will be able to: Apply properties of medians of a triangle and apply properties of altitudes of a triangle.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Class Greeting.
Math Humor Q: What do you do when it rains? A: Coincide!
Every triangle has three medians, and the medians are concurrent.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Vocabulary median of a triangle centroid of a triangle
Objectives Apply properties of medians of a triangle.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Bisectors of a Triangle
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Warm Up– in your notebook
Properties of Triangles
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes.
Medians and Altitudes of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Learning Target I can: Apply properties of medians of a triangle and apply properties of altitudes of a triangle.
Presentation transcript:

Holt Geometry 5-3 Medians and Altitudes of Triangles Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of the segment with the given endpoints. 2. (–1, 6) and (3, 0) 3. ( – 7, 2) and (–3, –8) 4. Write an equation of the line containing the points (3, 1) and (2, 10) in point-slope form.

Holt Geometry 5-3 Medians and Altitudes of Triangles Apply properties of medians of a triangle. Apply properties of altitudes of a triangle. Objectives

Holt Geometry 5-3 Medians and Altitudes of Triangles A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side. Every triangle has three medians, and the medians are concurrent.

Holt Geometry 5-3 Medians and Altitudes of Triangles The point of concurrency of the medians of a triangle is the centroid of the triangle. The centroid is always inside the triangle. The centroid is also called the center of gravity because it is the point where a triangular region will balance.

Holt Geometry 5-3 Medians and Altitudes of Triangles In ∆LMN, RL = 21 and SQ =4. Find NQ. Find LS

Holt Geometry 5-3 Medians and Altitudes of Triangles In ∆JKL, ZW = 7, and LX = 8.1. Find KW. Find LZ.

Holt Geometry 5-3 Medians and Altitudes of Triangles A sculptor is shaping a triangular piece of iron that will balance on the point of a cone. At what coordinates will the triangular region balance?

Holt Geometry 5-3 Medians and Altitudes of Triangles Find the average of the x-coordinates and the average of the y-coordinates of the vertices of ∆PQR. Make a conjecture about the centroid of a triangle.

Holt Geometry 5-3 Medians and Altitudes of Triangles An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side. Every triangle has three altitudes. An altitude can be inside, outside, or on the triangle.

Holt Geometry 5-3 Medians and Altitudes of Triangles In ΔQRS, altitude QY is inside the triangle, but RX and SZ are not. Notice that the lines containing the altitudes are concurrent at P. This point of concurrency is the orthocenter of the triangle.

Holt Geometry 5-3 Medians and Altitudes of Triangles Find the orthocenter of ∆XYZ with vertices X(3, –2), Y(3, 6), and Z(7, 1). Step 1 Graph the triangle. X Step 2 Find an equation of the line containing the altitude from Z to XY. Step 3 Find an equation of the line containing the altitude from Y to XZ. Step 4 Solve the system to find the coordinates of the orthocenter.

Holt Geometry 5-3 Medians and Altitudes of Triangles Lesson Quiz Use the figure for Items 1–3. In ∆ABC, AE = 12, DG = 7, and BG = 9. Find each length. 1. AG 2. GC 3. GF For Items 4 and 5, use ∆MNP with vertices M (–4, –2), N (6, –2), and P (–2, 10). Find the coordinates of each point. 4. the centroid 5. the orthocenter

Holt Geometry 5-3 Medians and Altitudes of Triangles Homework pg evens 25,26,28, 34-37all 46,50