Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine.

Slides:



Advertisements
Similar presentations
Theory of probing orbitons with RIXS
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Mechanism of the Verwey transition in magnetite Fe3O4
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Mechanisms for effects of EDM in solids. Oleg P. Sushkov University of New South Wales, Sydney.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005.
Superconductivity in Zigzag CuO Chains
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach.
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Terahertz spectroscopy of electromagnons in Multiferroics
This presentation contains two lectures given by E
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
SNS picture “Recent Developments in the Study of Strongly Correlated Electronic Systems” E. Dagotto, UT-ORNL SNS , HFIR Nanocenter (CNMS) March 2005.
Chemistry Solid State Chemistry Transition Metal Oxide Rock Salt and Rutile: Metal-Metal Bonding Chemistry 754 Solid State Chemistry Lecture 23 May.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Magnetization dynamics
Berry Phase Effects on Electronic Properties
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
An Introduction to Fe-based superconductors
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Magnetic transitions of multiferroics revealed by photons 黃迪靖 同步輻射研究中心 清華大學物理系 May 9, 2007 Multiferroicity Soft x-ray magnetic scattering Magnetic transitions.
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
István Kézsmárki Budapest University of Technology Giant Directional Optical Anisotropies in the THz regime Spinwave Excitations in Multiferroics Collegues.
Vector Chiral States in Low- dimensional Quantum Spin Systems Raoul Dillenschneider Department of Physics, University of Augsburg, Germany Jung Hoon Kim.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
The Electronic Structure of the Ti4O7 Magneli Phase
KIAS workshop Sept 1, 2008 A tale of two spin chiralities in frustrated spin systems Jung Hoon Han (SungKyunKwan U, Korea)
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Recontres du Vietnam August 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Vector spin chirality in classical & quantum spin systems
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
KIAS Emergent Materials 2006 Bond Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. Reference: cond-mat/0607 Collaboration Chenglong.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetism of the regular and excess iron in Fe1+xTe
Model for B Site Ordering in PMN Eric Cockayne Benjamin P. Burton Material Measurement Laboratory, NIST, Gaithersburg.
The Quantum Theory of Magnetism Carlo Maria Canali Linnaeus University 7 December 2011 – Lecture 21.
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
Axion electrodynamics on the surface of topological insulators
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
Image © NPG Rogério de Sousa
Hyperfine interaction studies in Manganites
UC Davis conference on electronic structure, June. 2009
Bond Polarization induced by Magnetic order
Presentation transcript:

Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine Ortix George Sawatzky,Frank Kruger,Ilya Elfimov,Jan Zaanen

Layered crystal structure LaOFeAs Fe d 6 tetrahedral surrounding egeg t 2g egeg S=2S=1S=0 exp. ordered moment: 0.4  B (bad) metal C-type magnetic order

Giovannetti, Kumar, JvdB, arXiv: Phys B. doi: (2008) LaOFeAs: LDA+U, C-type magnetic order Fe 3d-band width ~4 eV S=2 gap ~0.5 eV

Stochiometric LaOFeAs S=2, Mott insulator Experimental small moment and “metallicity” are due to off-stochiometry high spin Fe found in XAS Bernd Buchner, Martin Knupfer arXiv: Giovannetti, Kumar, JvdB, Phys B. doi: (2008)

Multiferroics = Magnetic Ferroelectrics Why study them?Magnetic ferroelectrics are very rare! Fundamental interest: Why rare? How to get around? How to get strong coupling between magnetic and ferroelectric orderparameter? Van Aken et al., Nature 449, 702 (2007) Cheong and Mostovoy, Nature Mat. 6, 13 (2007) Eerenstein et al., Nature 442, 759 (2006) Pimenov et al., Nature Phys. 97, 100 (2006) Ikeda et al., Nature 436, 1136 (2005) Lottermoser et al., Nature 430, 541 (2004) Zheng et al., Science 303, 661 (2004) Kimura et al., Nature 426, 55 (2003) Hur et al., Nature 429, 392 (2003)

Observed multiferroic couplings -- BiFeO 3 and BiMnO 3 T magnetic <<T ferroelectric orderparameters barely couple -- Pr 1-x Ca x MnO 3, HoMn 2 O 5 magnetism induces FE, but: no chiral symmetry breaking -- TbMnO 3, DyMnO 3, Ni 3 V 2 O 8 T ferroelectric =T magnetic magnetism induces FE chiral magnetic order (spin spiral) does the job Maxim Mostovoy, PRL 96, (2006) ???

Mn 3+ Mn 4+ HoMn 2 O 5 Mn 3+ Mn 4+

HoMn 2 O 5 Mn 3+ Mn displacements due to dislocated SDW / magneto-striction electronic and ionic ferroelectric polarization conceptual picture Betouras, Giovannetti, JvdB, PRL 98, (2007)

Ab initio bandstructure computations ~1200 nC/cm 2 Incorporating electron correlation effects with LDA+U fixes the problem experimental polarization ~80 nC/cm 2 ferroelectric domains?

small polarization due to near cancellation of P ion and P elec Gianluca Giovannetti and JvdB, PRL 100, (2008)

11 Mn 4+ / Mn 3+ Oxygen 2- Pr 3+ /Ca 2+ Perovskite crystal structure of Pr 1-x Ca x MnO < x < 0.5

Near x=0.4 : Bond-centered charge/spin ordering A.Daoud-Aladine et al., PRL (2002) egeg t 2g Dimer

Near x=0.5 : Site-centered charge/spin ordering E.O. Wollan and W.C. Koeler, Phys. Rev. 100, 545 (1955)

Ferroelectric? x=0.5x=0.4 Site centered spin/CO Bond centered spin/CO Ferro-electric groundstate 0.4 < x < 0.5 intermediate It is allowed by symmetry:can happenwill happen Jooss et al., PNAS 104, (2007) observed to happen

....and it first happened in microscopic DDEX model JvdB, Khomskii, PRL 82, 1016 (1999) Efremov, JvdB, Khomskii, Nature Mat. (2004) stabilization of dislocated SDW phasemultiferroicity

Continous transition from Site centered CO Bond centered CO to “in between order” Computed phase diagram of Pr 1-x Ca x MnO 3 Efremov, JvdB, Khomskii, Nature Mat. (2004) Breaking of inversion symmetry in the intermediate phase Ferro-electricityMagnetism

Giovannetti, Kumar, JvdB, Picozzi, preprint (2008)

we predict.... LaOFeAs to be Mott insulator with Fe high spin La 1/2 Ca 1/2 MnO 3 to be strongly multiferroic Conclusions

Simple 1D Picture suggests FE in quasi-1D organic charge transfer salts which is observed! e.g.: S. Brazovskii, Physics of Organic Superconductors and Conductors Springer Series in Materials Sciences (2008). longitudinal charge displacements

Perovskite HoMnO 3 with GdFeO 3 distortion Magnetic E-phase S. Picozzi et al., Phys. Rev. Lett. 99, (2007).

Simple 1D Picture Superexchange strengthens bonds of antiparallel spins Double exchange strengthen bonds of parallel spins all oxygens move down! transversal charge displacements JvdB and Daniel Khomskii, J. Phys. C.M., in press (2008)

HoMn 2 O 5 CM+FE ICM+PE Kimura, Kamada, Noda, Kaneko, Metoki, Kohn cond-mat/ (2006)

1. Phenomenological approach

Magneto-electric coupling: Ginzburg-Landau Electric polarization Magnetization Free energy must be invariant for: time reversalspatial inversion couple these two orderparameters

Magneto-electric coupling: Ginzburg-Landau To build an invariant we need We are interested in ferroelectrics: uniform electric polarization so that which implies that: SPIRAL

Our key observation: Betouras, Giovannetti, JvdB, PRL 98, (2007) becomes active if SDW dislocated magnetization is shifted with respect to the lattice (but inversion invariant) Giovannetti and JvdB, PRL 100, (2008)

Minimize Free Energy with Ansatz for polarization gives finite p 0 and p 1 only when q m = q/2 For multiferroic coupling it is sufficient to have commensurate dislocated magnetic order with

Chapon, Radaelli, Blake, Park, Cheong Phys. Rev. Lett. 96, (2006) ICM CM ICM ICM: incommensurate magnetic ordering CM: commensurate YMn 2 O 5 indeed only commensurate magnetic phase is ferroelectric!