CEPC Accelerator Design Issues and International Collaboration J. Gao For the CEPC Accelerator Group Institute of High Energy Physics Beijing, CAS The.

Slides:



Advertisements
Similar presentations
CEPC BoosterDesign CEPC Booster Design FCC Week 2015, March, 2015 Marriot Georgetown Hotel Huiping Geng Presented for Chuang Zhang.
Advertisements

CEPC/SppC and FCC Collaboration J. Gao On behalf of CEPC+SppC Group IHEP, CAS, China Pre-FCC ICB Meeting Sept. 9-10, 2014.
The strategy of Accelerator based High Energy Physics of China J. Gao On behalf of CEPC+SppC Group IHEP, CAS, China Roundtable discussion: “Future machines“
Qingjin XU Institute of High Energy Physics (IHEP)
The IR lattice design and optimization of the dynamic aperture for the ring Yiwei Wang, Huiping Geng, Yuan Zhang, Sha Bai, Dou Wang, Tianjian, Jie Gao.
CEPC/SppC with ILC ( FCC) J. Gao Institute of High Energy Physics Beijing, CAS Panel discussion, Nov. 5, at LCWS 2015 Nov. 2-6, 2015, Whistler, Canada.
Lattice design for CEPC main ring H. Geng, G. Xu, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, Y. Zhang, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai, Q. Qin,
Design study of CEPC Alternating Magnetic Field Booster Tianjian Bian Jie Gao Michael Koratzinos (CERN) Chuang Zhang Xiaohao Cui Sha bai Dou Wang Yiwei.
CEPC Status Yifang Wang Institute of High Energy Physics, Beijing Munich, May 2, 2016.
Accelerator Design of CEPC PDR and APDR Scheme Dou Wang, Jie Gao, Feng Su, Yuan Zhang, Ming Xiao, Yiwei Wang, Bai Sha, Huiping Geng, Tianjian Bian, Na.
CEPC parameter choice and partial double ring design
Design Study of CEPC Booster and Mainring Lattice
Interaction region design for the partial double ring scheme
Design study of CEPC Alternating Magnetic Field Booster
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC parameter optimization and lattice design
Primary estimation of CEPC beam dilution and beam halo
The 13th Symposium on Accelerator Physics
Issues in CEPC pretzel and partial double ring scheme design
CEPC pretzel scheme study
Pretzel scheme of CEPC H. Geng, G. Xu, Y. Zhang, Q. Qin, J. Gao, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai,
Optimization of CEPC Dynamic Aperture
Lattice design for CEPC PDR
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Lattice design for CEPC PDR
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
CEPC Booster Design Progress (Low field)
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC APDR SRF considerations(3)
Some CEPC SRF considerations
CEPC partial double ring scheme and crab-waist parameters
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
Comparison of the final focus design
LHC (SSC) Byung Yunn CASA.
Lattice design for the CEPC collider ring
CEPC APDR and PDR scheme
CEPC partial double ring FFS design
CEPC advanced partial double ring scheme
CEPC partial double ring FFS design
CEPC parameter optimization and lattice design
Design study of CEPC Alternating Magnetic Field Booster
Design study of CEPC Alternating Magnetic Field Booster
CEPC DA optimization with downhill Simplex
CEPC Partial Double Ring Lattice Design and DA Study
Design study of CEPC Alternating Magnetic Field Booster
Design study of CEPC Alternating Magnetic Field Booster
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
CEPC optics and booster optics
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
Lattice design and dynamic aperture optimization for CEPC main ring
Simulation check of main parameters (wd )
Lattice Design of the Collider Ring toward TDR
Lattice design for CEPC PDR
Lattice design for CEPC
CEPC APDR and PDR scheme
CEPC parameter optimization and lattice design
Lattice design for CEPC PDR
CEPC Parameter /DA optimization with downhill Simplex
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

CEPC Accelerator Design Issues and International Collaboration J. Gao For the CEPC Accelerator Group Institute of High Energy Physics Beijing, CAS The First IHEP-BINP CEPC Accelerator Collaboration Workshop IHEP, Jan , 2016

Contents CEPC design goals and options Key accelerator physics towards CDR Important milestone meetings and international collaborations The goal of the first IHEP-BINP CEPC accelerator collaboration workshop

3 Introduction to CEPC+SppC (Pre-CDR) LTB : Linac to Booster BTC : Booster to Collider Ring BTC IP1 IP3 e+e- e+ e- Linac (240m) LTB CEPC Collider Ring(54Km ) Booster(54Km ) BTC Medium Energy Booster(4.5Km) Low Energy Booster(0.4Km) IP4 IP2 SppC Collider Ring(54Km) Proton Linac (100m) High Energy Booster(7.2Km)

CEPC Design –Higgs Parameters ParameterDesign Goal Particlese+, e- Center of mass energy240 GeV Luminosity (peak)2*10^34/cm^2s No. of IPs2 CEPC Design – Z Parameters 4 ParameterDesign Goal Particlese+, e- Center of mass energy45.5 GeV Integrated luminosity (peak)>1*10^34/cm^2s No. of IPs2 PolarizationConsider in the second round

CEPC-SPPC Timeline (preliminary) 5CEPC-SPPC Meeting, May 17-18, 2015W. Chou R&D Engineering Design ( ) Construction ( ) Data taking ( ) Pre-studies ( ) 1 st Milestone: Pre-CDR (by the end of 2014) → R&D funding request to Chinese government in 2015 (China’s 13 th Five-Year Plan ) CEPC R&D ( ) Engineering Design ( ) Construction ( ) Data taking ( ) SPPC 2 nd Milestone: 13 th Five Year Plan R&D

CEPC-SppC relations 6 CEPC (e+e-) be built first and after 7 years operation SppC (pp) starts to be built in the same channel In machine design, CEPC and SppC could be operated at the same time Tunnel length is determined by CEPC and SppC jointly

CEPC CDR Goal 7 At the end of 2016, we should provide a CEPC design which satisfies the CEPC Higgs and Z-pole physics goal at the same time, and works “on paper”, considering some most important technical limitations. Choice between CEPC single ring with Pretzel scheme (Pre-CDR) or CEPC with local double ring scheme should be made in early 2016.

CEPC Single Ring with Pretzel Scheme Vs CEPC Local Double Ring Scheme 8 At the end of 2016, we should provide a CEPC design which satisfies the CEPC Higgs and Z-pole physics goal at the same time, and works “on paper”, considering some most important technical limitations. Choice between CEPC single ring with Pretzel scheme and CEPC with local double ring scheme should be made in early 2016.

ParameterUnitValueParameterUnitValue Beam energy [E]GeV120Circumference [C]m54420 Number of IP[N IP ] 2SR loss/turn [U 0 ]GeV3.11 Bunch number/beam[n B ] 50Bunch population [Ne] 3.71E+11 SR power/beam [P]MW51.7Beam current [I]mA16.6 Bending radius [  ] m6094 momentum compaction factor [  p ] 3.39E-05 Revolution period [T 0 ]s1.82E-04Revolution frequency [f 0 ]Hz emittance (x/y)nm6.12/0.018  IP (x/y) mm800/1.2 Transverse size (x/y) mm 69.97/0.15  x,y /IP 0.116/0.082 Beam length SR [  s.SR ] mm2.17 Beam length total [  s.tot ] mm2.53 Lifetime due to Beamstrahlungmin80 lifetime due to radiative Bhabha scattering [  L ] min52 RF voltage [V rf ]GV6.87RF frequency [f rf ]MHz650 Harmonic number [h] Synchrotron oscillation tune [ s ] 0.18 Energy acceptance RF [h]%5.98 Damping partition number [J  ] 2 Energy spread SR [  .SR ] %0.13 Energy spread BS [  .BS ] %0.08 Energy spread total [  .tot ] %0.16nn 0.23 Transverse damping time [n x ]turns78Longitudinal damping time [n  ]turns39 Hourglass factorFh0.692Luminosity /IP[L]cm -2 s E+34 Main parameters for CEPC (Pre-CDR)

CEPC Lattice Layout (September 24, 2014) P.S. IP1 IP4 IP3 IP2 D = 17.3 km ½ RF RF ½ RF RF One RF station: 650 MHz five-cell SRF cavities; 4 cavities/module 12 modules, 10 m each RF length 120 m 4 IPs, m (944 m) each 4 straights, m (944 m) each 8 arcs, m each C = km 10

ParameterValueUnit Circumference52km Beam energy35TeV Dipole field20T Injection energy2.1TeV Number of IPs2 (4) Peak luminosity per IP1.2E+35cm -2 s -1 Beta function at collision0.75m Circulating beam current1.0A Max beam-beam tune shift per IP0.006 Bunch separation25ns Bunch population2.0E+11 SR heat dipole (per aperture)56W/m SppC main parameters (Pre-CDR)

258 authors from 45 institutions in 9 countries

Main problems left in Pre-CDR Pretzel scheme is difficult in design, operation, fexibility and stability High AC power Booster with very low magnetic field (30 Gauss for 6GeV injection compared with 3 Gauss backgroud magnetic field in BEPCII tunnel) and small dynamic aperture Very low luminosity for Z with single ring Very small DA at 2% energy spread The clear criterion for reaching CDR requirement on DA with beam- beam effects and magnetic errors What is the goal of CEPC CDR? In short, Pre-CDR is a "design" even not working on paper

Main progresses after pre-CDR towards CDR CEPC local double ring design and crab-waist CEPC parameters (avoid: pretzel scheme, high AC power and low Z luminosity) (Dou Wang, Feng Su) The criterion for CEPC DA to reach the requirement of CDR with beam- beam effect (J. Gao, Yiwei Wang, Dou Wang) New Booster design to solve the problem low magnetic field and DA (Tianjian Bian) CEPC magnets error on DA (Sha Bai) CEPC pretzel scheme (Huiping Geng) Pre-CDR Booster: residule field in the tunnel (BEPCII), lattice (Xiaohao Cui) CEPC MDI (Sha Bai) line 1 line 2

CEPC accelerator design activities towards CDR Weekly CEPC Accelerator design beam dynamics meeting after Pre-CDR towards CDR: Website contents: 1) Talks ppt 2) Minutes The main working fields: 1)Double ring shceme 2)Crab-waist parameters 3)Pretzel scheme 4)Dynamic aperture optimiazation (with FFS) 5)Boosters (conventional and alternating dipole field schemes) 6)Magnet error effects on DA 7)MDI 8)SppC lattice design 9)CEPC bunch lengtening effects (collective effects) 10)….

Machine constraints / given parameters (D. Wang et al) Energy E 0 Circumference C 0 N IP Beam power P 0  y * Emittance coupling factor   Bending radius  Piwinski angle   y enhancement by crab waist F l ~1.5 Energy acceptance (DA) Phase advance per cell (FODO)

Primary parameter for CEPC local double ring (D. Wang et al) Pre-CDRH-high lumi. H-low powerZ Number of IPs2222 Energy (GeV) Circumference (km) 54 SR loss/turn (GeV) Half crossing angle (mrad) Piwinski angle N e /bunch (10 11 ) Bunch number Beam current (mA) SR power /beam (MW) Bending radius (km) Momentum compaction ( )  IP x/y (m) 0.8/ / / / / /0.001 Emittance x/y (nm) 6.12/ / / / / / Transverse  IP (um) 69.97/0.1532/ / / / /0.083  x /IP  y /IP V RF (GV) f RF (MHz) 650 Nature  z (mm) Total  z (mm) HOM power/cavity (kw) Energy spread (%) Energy acceptance (%) Energy acceptance by RF (%) nn Life time due to beamstrahlung_cal (minute) F (hour glass) L max /IP (10 34 cm -2 s -1 )

CEPC single ring parameter (D. Wang et al) H Z Pre-CDRLow-HOM Number of IPs2 2 2 Energy (GeV) Circumference (km) 54 SR loss/turn (GeV) N e /bunch (10 11 ) Bunch number Beam current (mA) SR power /beam (MW) Bending radius (km) 6.1 Momentum compaction (10 -5 ) 3.4  IP x/y (m) 0.8/ / / Emittance x/y (nm) 6.12/ / /0.018 Transverse  IP (um) 69.97/ / /0.15  x /IP  y /IP V RF (GV) f RF (MHz) 650 Nature  z (mm) Total  z (mm) HOM power/cavity (kw) Energy spread (%) Energy acceptance (%) Energy acceptance by RF (%) nn Life time due to beamstrahlung_cal (minute) F (hour glass) L max /IP (10 34 cm -2 s -1 )

bypass (pp) Advantage: Avoid pretzel orbit Accommodate more bunches at Z/W energy Reduce AC power with crab waist collision Advantage: Avoid pretzel orbit Accommodate more bunches at Z/W energy Reduce AC power with crab waist collision

CEPC Partial Double Ring Layout By AT Bypass CEPC Partial Double Ring C=59044m SU Feng

CEPC Local Double Ring Lattice (F. Su et al)

IR Design and sextupoles (Y.W. Wang et al) Yiwei Wang13 Nov Idea from Brinkmann correct the high order chromaticity, break down of –I, second order dispersion -I IP FTFT CC Y CC X MT FFS_3.0mm_v3.0_Sep_2015, Yiwei Wang

CEPC Single Ring DA Study (Y.W. Wang et al) Yiwei Wang13 Nov families 100 turns Left: w/o damping Right: w/ damping FFS_3.0mm_v3.0_Sep_2015, Yiwei Wang

CEPC injectors W. Chou25 Booster Cycle (0.1 Hz) Top-up Full-energy Injection

CEPC new booster design with alternating (Wiggling) bend scheme (T.J. Bian et al)  The inject energy is 6GeV.  If all the dipoles have the same sign, may cause problem.  In wiggling bend scheme, adjoining dipoles have different sign to avoid the low field problem.  Shorten the Damping times greatly.  The picture below shows the FODO structure. Introduction of Wiggling Bend Scheme

New Booster Linear Optics (T.J. Bian et al )

Booster Parameters (T.J. Bian et al )  Main difference in parameters between Pre-CDR booster (old) and the alternating field booster (new) Parameter U0 [MeV/turn] Damping times(x/y) [s] Emittances(x) [pi nm] Strength of dipole [Gs] / Beam offset in dipole[cm]02.3 Length of dipole [m]19.6*14.9*4 Length of FODO [m]47.2

New Booster Parameters (T.J. Bian et al ) Booster Parameter List for Alternating Magnetic Field Scheme. ParameterUnitValue Beam energy [E]GeV6 Circumference [C]km Revolutionfrequency[f 0 ]kHz SR power / beam [P]MW6.41E-04 Beam off-set in bendcm2.30E+00 Momentum compaction factor[α]2.70E-05 Bending radius [r]m n B /beam50 Lorentz factor [g] Magnetic rigidity [Br]T·m20.01 Beam current / beam [I]mA Bunchpopulation[N e ]2.08E+10 Bunch charge [Q b ]nC3.34 emittance-horizontal[e x ] inequilibrium m·rad1.11E-10 injected from linacm·rad3.00E-07 emittance-vertical[e y ] inequilibriumm·rad1.11E-12 injected from linacm·rad3.00E-07 ParameterUnitValue RF voltage [Vrf]GV RF frequency [frf]GHz1.3 Harmonic number [h] Synchrotronoscillationtune[n s ] Energy acceptance RF [h]% SR loss / turn [U0]GeV6.97E-04 Energyspread[s d ] inequilibrium% injected from linac%0.1 Bunch length[s d ] inequilibriummm0.05 injected from linacmm~1.5 Transversedampingtime[t x ]ms turns17228 Longitudinaldampingtime[t e ]ms1.6 turns9

New Booster Operation (T.J. Bian) Angle of dipole v.s. timeField of dipole v.s. time

Illustrated design without realistic considerations To meet requirements from both accelerator and detector CEPC MDI design study (S. Bai et al) Beam background Shielding design Collimator design SC magnet design Lumical ……..

CEPC Pretzel Orbit Design Find proper positon and strength of static electric separators, then the pretzel orbit can be well generated. (Huiping Geng)

CEPC-SPPC international working groups (to be established in 2016) CEPC Groups (member sources): CEPC Design Group (CERN, BINP, SLAC, KEK, INFN, Cornel, DESY, etc) CEPC MDI Group (KEK, SLAC, CERN, LAL, etc) CEPC SCRF Group (KEK, DESY, FERMI, SLAC, JLab, INFN-Milano, etc) CEPC RF Source Group (KEK, FERMI, SLAC, etc) CEPC Green Energy Group (KEK, IN2P3)

CEPC International Collaborations KEK (with Super KEK B and ILC team) (Yiwei Wang visited KEK in 2015) BINP (Super-Tau Charm team) (BINP team 6 pepole join CEPC in 2016) SLAC (Lattice design) (Tianjian Bian will visit SLAC in 2016) BNL (Daynamic aperture) (Feng Su will visit BNL in 2016) INFN (Crab-waist) (IAS Hongkong) LAL (Collimation) (Sha Bai will visit LAL in 2016) CERN (FCCe+e-, Booster) (Oide and Mike visited IHEP)....

Some next year milestone meetings 1)The first IHEP-BINP collaboration workshop on CEPC, Jan 12-13, 2016, IHEP 2)IAS Conference on future of high energy physics, Jan , 2016, Hongkong ( ) 3) AFAD Workshop, Feb. 1-3, 2016, Kyoto, Japan ( 4) CEPC Working Group Meeting, IHEP ( 5) The first CEPC International Collaboration Meeting (TBD)

IAS Conference Accelerator Program (Jan , 2016)

Program

The Goal of the first IHEP-BINP CEPC Accelerator Workshop 38 Discuss the choice of CEPC single ring or local double ring schemes Discuss the CEPC local double ring parameters both for Higgs and Z-pole energies, with crossing angle, Piwinski angle (parameter sets with crab-waist collisions) Booster design options with conventional and alternating field schemes Beam-beam simulations with crab-waist collisions Dynamic aperture optimizations with CEPC whole ring lattices and magnets's errors MDI issues Polarization issues IHEP-BINP collaboration fields and subjects (Jan. 13, 2016)

Thank you for your attentionand have a good exchange of ideas and discussions!