Studying ISM and star formation in M33 with ALMA Sachiko Onodera & NRO MAGiC Team: (M33 All-disk Survey of Giant Molecular Clouds) N. Kuno 1, T. Tosaki.

Slides:



Advertisements
Similar presentations
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Advertisements

The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
Toyoaki Suzuki (ISAS/JAXA) Hidehiro Kaneda (Nagoya Univ.) Takashi Onaka (Tokyo Univ.)
CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
In the search for CO emission in young, low- metallicity spiral disks and dwarf galaxies: Prospects for ALMA Armando Gil de Paz (UCM), Kartik Sheth (Caltech/SSC),
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
ASKAP Continuum Surveys of Local Galaxies Michael Brown ARC Future Fellow Monash University.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Constraining the Physics of Star Formation in Galaxies Using the JVLA and GBT Amanda Kepley NRAO - GB.
渦状銀河における GMC の進化と星形 成 Evolution of GMCs and star formation in spiral galaxies Nario Kuno Nobeyama Radio Observatory 1.NRO M33 All-Disk Survey of Giant.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Galactic and Extragalactic star formation M.Walmsley (Arcetri Observatory)
CO J =1-0 + J =3-2 map (Oka+ 1999, 2007) Galactic Center Kunihiko Tanaka (1), Tomoharu Oka (1), Shinji Matsumura (1), Kazuhisa Kamegai (2), Makoto Nagai.
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Sub-mm/mm astrophysics: How to probe molecular gas
Á L V A R O S Á N C H E Z M O N G E B A R C E L O N A - N O V E M B E R 23, 2006 Centimeter and Millimeter Emission from Selected High-Mass Star-Forming.
Dramatic change in environments of galaxy disks and intergalactic space Suzuki et al. (2007,2010a) M101 銀河 Suzuki et al. (2010b) M101 Stephan’s Quintet.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
8th Sino-German Workshop Kunming, Feb 23-28, 2009 Milky Way vs. M31: a Tale of Two Disks Jinliang HOU In collaboration with : Ruixiang CHANG, Shiyin SHEN,
Star Formation: Near and Far Neal J. Evans II with Rob Kennicutt.
Interstellar Medium and Star Formation in the Andromeda Galaxy Andreas Schruba California Institute of Technology Adam Leroy, Karin Sandstrom, Fabian Walter,
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
June 21, th International Symposium on Molecular Spectroscopy Nicholas R. Zeigler Lindsay N. Zack Neville J. Woolf Lucy M. Ziurys Department of.
The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
Philamentary Structure and Velocity Gradients in the Orion A Cloud
Jet Propulsion Laboratory
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.
CO Rotation Curves High-velocity Rotation, Deep Potential, & Dense Molecular Cores in Spiral Centers Sofue, Y., Koda, J., Nakanishi, H., Onodera, S., Egusa,
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
The Secret Lives of Molecular Clouds Mark Krumholz Princeton University Hubble Fellows Symposium March , 2008 Collaborators: Tom Gardiner (Cray.
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
HCO+ in the Helix Nebula
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Chemical evolution of N2H+ in massive star-forming regions
KENNICUTT-SCHMIDT RELATION VARIETY AND STAR-FORMING CLOUD FRACTION
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Studying ISM and star formation in M33 with ALMA Sachiko Onodera & NRO MAGiC Team: (M33 All-disk Survey of Giant Molecular Clouds) N. Kuno 1, T. Tosaki 2, S.Onodera 1, R. Miura 3, K. Muraoka 4, S. Komugi 5, T. Sawada 6, K. Nakanishi 6, K. Kohno 3, H. Kaneko 7, A. Hirota 1, R. Kawabe 1 1 NRO, NAOJ, 2 Joetsu Univ. of Education, 3 Univ. of Tokyo 4 Osaka Prefecture Univ., 5 ISAS/JAXA, 6 ALMA Project Office, NAOJ 7 Graduate Univ. for Advanced Studies M33-chan by T.Sawada

Evolution of ISM/star formation What controls each process? metallicity radiation field pressure Compression by arm/bar Gravitational instability Cloud-cloud collision Diffuse ISM (atomic gas) Dense ISM (molecular gas) Dense core Star formation Dissipation of ISM

M33:the Best Field for GMC Study Close to our Galaxy (D = 840 kpc) each GMCs can be resolved (1"~ 4 pc) Observable with ALMA (Decl.= 30°) Moderately face-on Distribution of GMCs in the whole disk, in relation to other components (e.g. star-forming regions) Star-forming regions over the whole disk NGC604 NGC595 IC133 SUBARU Suprime-cam (BVHα)

Advantages to Milky Way – Without blending in line-of-sight – Much larger sample number In equal distance In various evolutional stages The best target for studying GMCs and star formation in a whole galaxy M33:the Best Field for GMC Study

NRO MAGiC & our previous M33 works Integrated intensity map Velocity field 12CO(1-0) with 45m Onodera+ (2010) Tosaki+ (submitted) 13CO(1-0) with 45m Miura+ (in prep.) Muraoka+ (in prep.) 12CO(3-2) with ASTE Tosaki+ (2007) Miura+ (in prep.) Onodera+ (in prep.) 1.1mm dust continuum with ASTE/AzTEC Komugi+ (submitted) HCN & continuum with NMA Miura+ (in prep.) CO (1-0) map (Tosaki+ submitted)

Color : 12 CO(3-2) with ASTE Grey & contour : 12 CO(1-0) with NRO 45m ΔT mb ~ mk 5×5 7.3× × × ×3 3.3× ×4 2.5×2.5 Total ~ 140 arcmin 2 Wide range of CO(3-2)/CO(1-0) Miura et al. 2010, in prep. (Miura+ in prep.)

M33 AzTEC / ASTE ・ D= 0.84 Mpc, opt. size = 70’ x 40’ ・ obsered , 30 hours on source  avg. τ 220GHz = 0.06 ・ 30’ x 30’ x 2 field, 28” = 120pc res.  most of SF disk ・ 1σ = 4-5 mJy/b = ~ 600 M o dust ・ 1100 um concentrated along spiral arms, SF regions. Good spatial correlation w/ HI overdensity regions ・ can be used for : Dust physics (w/ AKARI, Spitzer, Herschel) GMC evolution, SF studies (w/ CO, HI) star cluster / galaxy evolution (w/ Subaru) 1kpc Komugi et al submitted to ApJ Cold dust temperature map Smooth gradient from G.C> to outer R

Difference of evolutionary stages among GMCs ~ 6′ 1.4kpc (Onodera, PhD thesis 2009)

To what scale is the Kennicutt- Schmidt law valid? the surface density of molecular gas mass vs SFR in the highest resolution (~80pc) to date Correlation evident in 1kpc, 500pc Becomes looser with higher resolution, and finally breaks down ⇒ GMC scale (~80pc) is where the K-S law becomes invalid Σ(SFR) Hα,corr [M o yr -1 pc -2 ] (Onodera+ 2010) Σ(H2)[M o pc -2 ] Resolution ~80pc ~250pc ~500pc ~1kpc 2σ2σ

Low SF activity ⇒ fraction of dense gas Higher mass GMCs have higher fraction of dense gas? (Onodera+, in prep.) GMC evolution? Red Σ(SFR)> 1x10 -8 Mopc -2 Blue Σ(SFR) < 1x10 -8 Mopc -2 Muraoka+ 2007

Difference of evolutionary stages among GMCs LVG calculation using I(12CO1-0)/I(13CO1-0) & I(12CO3-2)/I(12CO1-0) Definition: Tk>30K WARM n(H2) > 2000 cm -3 DENSE SFR > 10 8 Mo yr -1 pc -2 ACTIVE SF (Miura+ in prep.)

Observation with ALMA: inside GMCs

Massive star formation Massive stars are formed in GMC ( M>10 5 Mo ) Most stars ( 70‐90% ) in GMCs are formed in clusters Lada et al., 1991, ApJ 371, 171 Carpenter, 2000, AJ 120, 3139 Lada & Lada, 2003, ARAA 41, 57 (cluster mass Mo) Clusters are formed in dense gas clumps size:~1pc, Mo, density : cm -3 (Higuchi et al. 2009, ApJ 705, 468; Lada & Lada 2003) e.g., volume filling factor 8% (Rosette Molecular Cloud) (Williams et al. 1995, ApJ 451, 252)

Clumps related with massive star formation M > 100 Mo, size ~ 1 pc – Fraction of total mass/volume of GMCs? – Distribution? – Maximum mass? Evolution of GMCs/star formation? Environment/galactic structure ? Properties of GMCs Massive star formation

Revealing clump formation within GMCs Internal structure along with GMC evolution Fraction of denser gas and diffuser gas Their distribution ↓ Formation mechanisms of dense clump Relation to properties of their natal GMCs ↓ Cluster, massive star formation

Rosette Molecular Cloud 13CO(1-0) Bell Lab. 7m Beam Size ~ 0.7pc Williams et al ApJ 451, 252 GMC Observation inside MW

Williams et al. 1995, ApJ 451, 252 Stars are formed in Massive clumps (>a few 100Mo) With IRAS source

Dense clumps associated with embedded clusters Higuchi et al. 2009, ApJ 705, 468

Strategy 1: Cold dust continuum

Cold dust continuum from dense clumps The Lagoon Nebula Dense clump cm -3 Gray scale : 850um (SCUBA) Contour : CO(2-1), CO(3-2) (Tothill et al. 2002, ApJ 580, 285)

1.1mm continuum – Comparison with ASTE1.1mm map ↓ Fraction of clump mass to total mass Komugi et al submitted to ApJ

Targets: GMC complexes in much different stages of evolution Contour : CO(1-0) Gray scale : Ha Without star formation M~10 6 Mo NGC 604 With active star formation M~10 6 Mo 5.5′

Required integration time Total flux of Massive clump ( ~1pc, ~400Mo ) (Tothill et al eq.1:T d =27K, β=1.7, gas/dust=100) S(1.1mm) ~ 0.3mJy Estimation by ALMA sensitivity calculator – 270GH z (1.1mm ) – T sys ~ 160K – FOV : ~30″ ( ~10 pc ) – Beam size: 0.3″ ( ~1 pc ) – dF=8GHz – S rms = 0.1mJy 25min/FoV

15 fields for each ->13hrs/FoV -> total ~ 17hrs

In full operation clump survey for ALL GMCs – 12m×64 だと 1 視野あたり 3 分 より詳しく密度構造を知るために、多輝 線観測(高密度ガスのトレーサーを含む ) 例えば、 CO(3-2) の場合 – ビームサイズ: 0.3″ – 速度分解能: 0.5km/s – T rms = 1 K – 積分時間= 2.8 時間 (12m×16)

Strategy 2: Dense gas tracers

HCN detection in NGC604 SF is not active CO(3-2)/CO(1-0) ~ 0.5 In earlier stage of SF (Miura+ 2010) (Tosaki+ 2007)

Target: (1) NGC604-2& NGC604-4 (2) EPRB1 & EPRB2 Object: Stars earlier than O5 type Size, distribution of clumps Lines: CO(3-2),HCO+(4-3) CN(4-3), CS(2-1) In ES (B=250m) In full operation 0.16” 23hr/FoV With ALMA

Strategy 3: 90GHz continuum

90GHz continuum in NGC604 Well correlated with 24um 24um is a good tracer of SFR ( e.g. Calzetti+07) Dust-embedded young stars Comparison to 24um

Similarities between two SFEs similar even if we suppose all 89GHz emission is from free-free (Miura+ 2010)

With ALMA Target candidates –24um+Ha catalogue for each HII region (Verley+09) –3.6cm, 20cm radio continumm (Tabatabaei+07) 11 objects –MidInfrared (Hippelen+) In ES –FoV~60 ” ( ~ 250pc) –low resolution ~3 ” – –rms~0.1mJy –band width 8GHz –int.time 3 min /FoV !

Strategy 4: 12CO(1-0) line

12CO(1-0) survey in smaller scales Internal structure of GMCs – Velocity information Evolutionary stages – virialized or not? Filament and/or larger scale clumps? MC survey with a wide mass range ( M > a few 1000 Mo, R > 5pc ) – Intermediate-mass star formation – GMC formation – aggregation of smaller MCs or mere single large cloud?

With ALMA Intermediate mass MC ( ~5pc, δv~2km/s, M~5000Mo ) →Tmb=1.5K velocity resolution=0.635km/s) In ES – 115GHz CO(1-0) – T sys ~141K – FOV : ~70″(~280 pc) – Beam size: 1″(~4pc) – dF = kHz (0.635km/s) – S rms = 0.5K – 3.75 hrs/FOV GMC1 (the most massive GMC) 2 fields

Summary GMC evolution & star formation – Massive star formation – Internal structure – Especially massive clumps in ALMA ES Strategies for ALMA – Cold dust continuum: massive clumps – Dense gas tracer lines: dense clumps – 90GHz continuum: embedded SF – CO(1-0) line: internal structure