Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1):011404-011404-14.

Slides:



Advertisements
Similar presentations
ENGR 220 Section 6.3 – 6.4.
Advertisements

Homework 3-1 A 35 kg ladder of length L rests against a vertical wall and is inclined at 60° to the horizontal. The coefficient of friction between the.
ENGR 225 Section
CTC / MTC 222 Strength of Materials
Pure Bending of Straight Symmetrical Beams
Main Steps of Beam Bending Analysis Step 1 – Find Reactions at External Supports –Free Body Diagram (FBD) of Entire Beam –Equations of Force and Moment.
Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: A Controller Framework for Autonomous Drifting: Design, Stability, and Experimental.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space J.
Date of download: 6/8/2016 Copyright © ASME. All rights reserved. From: Modeling, Prototyping, and Testing of Helical Shape Memory Compression Springs.
Date of download: 6/9/2016 Copyright © ASME. All rights reserved. From: A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Computational Prediction of Muscle Moments During ARED Squat Exercise on the International.
Date of download: 6/25/2016 Copyright © ASME. All rights reserved. From: Optimal Design of Solenoid Actuators Driving Butterfly Valves J. Mech. Des. 2013;135(9):
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant.
Date of download: 6/29/2016 Copyright © ASME. All rights reserved. From: Post-Critical Behavior of Suspension Bridges Under Nonlinear Aerodynamic Loading.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Improving Machine Drive Dynamics: A Structured Design Approach Toward Balancing.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Stabilization of a Dynamic Walking Gait Simulation J. Comput. Nonlinear Dynam.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamics and Balance Control of the Reaction Mass Pendulum: A Three-Dimensional.
Date of download: 11/12/2016 Copyright © ASME. All rights reserved. From: The Impact of Sustainability on Consumer Preference Judgments of Product Attributes.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
From: The Lubrication Regime at Pin-Pulley Interface in Chain CVTs
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Hot-Stamped Boron Steel Sheets
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
From: On the Stability and Control of the Bicycle
From: On the Stability and Control of the Bicycle
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Parallel Dynamic Optimization of Steel Risers
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Bending Deformation.
From: Gravity-Balanced Arm Support With Energy-Free Adjustment
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
From: Nonlinear Passive Cam-Based Springs for Powered Ankle Prostheses
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
From: Dynamical Limit of Compliant Lever Mechanisms
Date of download: 12/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
From: Design of Axially Graded Columns Under a Central Force
Date of download: 12/20/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
From: The Multimodal Dynamics of a Walnut Tree: Experiments and Models
From: Mechanics of Cell Mechanosensing on Patterned Substrate
A Rigid Mechanism With Uniform, Variable Curvature1
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/13/2018 Copyright © ASME. All rights reserved.
From: Dynamics of a Basketball Rolling Around the Rim
From: Design of Compliant Bamboo Poles for Carrying Loads
Date of download: 1/24/2018 Copyright © ASME. All rights reserved.
From: Magnetic Field Effects on Laser Drilling
Lecture 17 Goals: Chapter 12 Define center of mass
Presentation transcript:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / People have been known to carry heavy loads with bamboo poles in parts of Asia for centuries. Large, bulky loads are often carried in large baskets tied with a long rope to each end of the pole. Carry loads with compliant bamboo poles may reduce the peak forces of carrying a given load. Further, compliant poles free the arms, which may then be used to help stabilize the baskets from swaying during locomotion. (a) “Yoke China” by unknown author is licensed under CC-BY-SA-3.0, via Wikimedia Commons. (b) “Chinese Women are Carrying Basket” by Stougard is licensed under CC-BY-SA-3.0, via Wikimedia Commons. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Possible configurations of a bamboo pole for carrying a load. The load is assumed to be evenly split on each end of the pole for balance. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Diagram showing our overall approach Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / The hip-actuated SLIP model of walking and running with a vertically constrained load suspension and representative trajectories. During running, the leg touches down when θ = β. During walking, there are two independent legs, with θ and Ψ describing the angle of each leg in stance. Each leg touches down independently when θ = β or Ψ = β. In both models, the leg lifts off of the ground when the vertical component of the leg's ground reaction force is 0 N. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / The bamboo pole supported on the shoulder with a symmetrically distributed load P could be treated as an equivalent linear beam bending system with simplified boundary conditions Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / The area moment of inertia about the centroid for a split bamboo pole with a hollow semicircular cross section (HSC) can be calculated using the parallel axis theorem by subtracting the moment of inertia about the HSC centroid (X HSC ) of the smaller semicircle (SSC) from the larger semicircle (SC) Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / The model trajectories of the load and the body (left) approximate the experimental results (right, reproduced from Ref. [1]). The results for the hip-SLIP model show the dynamics of the system at steady state, which differs from the more complex behavior shown in the actual experimental data. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / The peak force predictions of the model for a compliant pole and a rigid backpack as compared to the experimental results reported by Kram Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Model predictions of the peak shoulder forces over a range of effective pole stiffness values while running with a 15 kg load at 3 m/s, walking with a 15 kg load at 1 m/s and 1.34 m/s, and walking with a 30 kg load at 1 m/s and 1.34 m/s Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Recommended bamboo pole design region for running with a 15 kg load at 3 m/s Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Recommended bamboo pole design region for walking with a 15 kg load at 1 m/s and 1.34 m/s Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Recommended bamboo pole design region for walking with a 30 kg load at 1 m/s and 1.34 m/s Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Design of Compliant Bamboo Poles for Carrying Loads J. Mech. Des. 2015;137(1): doi: / Other possible designs of carrying yokes which are strong and sufficiently compliant. The top two images the side profile and the top profile of a yoke that could be carved from wood which would have a high second moment of inertia and a relatively low distance to the neutral axis, increasing strength. The bottom image shows a stacked arrangement of flattened wood or bamboo. Figure Legend: