Recent Updates: New Picosecond Pulsed Fiber Laser (PSL) By: Courtney Clarke.

Slides:



Advertisements
Similar presentations
High power (130 mW) 40 GHz 1.55 μm mode-locked DBR lasers with integrated optical amplifiers J. Akbar, L. Hou, M. Haji,, M. J. Strain, P. Stolarz, J. H.
Advertisements

EE 230: Optical Fiber Communication Lecture 17
Lab5 (Signal & System) Instructor: Anan Osothsilp Date: 20 Feb 07 Due Date 09 March 07.
1 Brukin2d software presentation Tsagkrasoulis A. Dimosthenis
1 Transmission Fundamentals Chapter 2 (Stallings Book)
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication Theoretical Basis of Data Communication.
Modal and Material Dispersion Daniil Y. Gladkov. Outline Hardware Types of Dispersion Data Transfer Function Future Project Proposals.
Pulsed Cathodic Arc Plasma Diagnostics Optical Emission Spectroscopy Results Aluminium.
Fiber-Optic Communications James N. Downing. Chapter 10 Fiber-Optic Test and Measurement.
EGR106 Week 6 MATLAB FILES Two Dimensional Plots Multiple Plots
WHY ???? Ultrashort laser pulses. (Very) High field physics Highest peak power, requires highest concentration of energy E L I Create … shorter pulses.
System Performance Stephen Schultz Fiber Optics Fall 2005.
Chapter 10 Optical fiber measuring instruments and testing single-mode fiber networks.
 fiber optics cable and free space optics (FSO). Like fiber optics cable, FSO uses lasers to transmit data, but instead of enclosing the data stream.
Radar equation review 1/19/10. Radar eq (Rayleigh scatter) The only variable is h, the pulse length Most radars have a range of h values. Rewrite the.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
Analysis of Phase Noise in a fiber-optic link
Picosecond fiber laser for thin film micro-processing
Wireless Communications Systems
Wireless and Mobile Computing Transmission Fundamentals Lecture 2.
C. Seez Imperial College November 28th, 2002 ECAL testbeam Workshop 1 Pulse Reconstruction Worth considering the experience of other experiments using.
Eusoballoon optics test Baptiste Mot, Gilles Roudil, Camille Catalano, Peter von Ballmoos Test configuration Calibration of the light beam Exploration.
Injection Locked Oscillators Optoelectronic Applications E. Shumakher, J. Lasri, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION.
S. Spampinati, J.Wu, T.Raubenhaimer Future light source March, 2012 Simulations for the HXRSS experiment with the 40 pC beam.
C. Fischer – LHC Instrumentation Review – 19-20/11/2001 Gas Monitors for Transverse Distribution Studies in the LHC LHC Instrumentation Review Workshop.
LIVES: LED LIV and Emission Spectrum Testing Solution W2 Laboratories
Introduction to PSpice
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Page 1 Wilfredo Rivas-Torres Technical Support Application Engineer October 12, 2004 Power Amplifier Design using ADS PA Workshop.
Lecture 2: Measurement and Instrumentation. Time vs. Frequency Domain Different ways of looking at a problem –Interchangeable: no information is lost.
MONALISA: The precision of absolute distance interferometry measurements Matthew Warden, Paul Coe, David Urner, Armin Reichold Photon 08, Edinburgh.
Optical sources Types of optical sources
Status of high gradient experiments at Nextef Kazue Yokoyama, Toshiyasu Higo, Yasuo Higashi, Shuji Matsumoto, Shigeki Fukuda Accelerator Laboratory, KEK.
Space-time analogy True for all pulse/beam shapes
Physics 434 Module 4 - T. Burnett 1 Physics 434 Module 4 Acoustic excitation of a physical system: time domain.
Gaussian pulses Bandwidth limited: Pulse duration FWHM Fourier transform Bandwidth duration product Chirped Gaussian Fourier Transform.
AB/BI J. Koopman New WS design - Brain storm session 18/06/2007 1/16 New WS design - Brain storm session.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) DB encoder; (b) DBM scheme with precoder. Figure Legend: From: Optical transmission.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Parallel structure of DQPSK transmitter. Figure Legend: From: Generation and transmission.
Progress of Shintake Monitor (ATF2 IP-BSM) ATF2 weekly meeting 2008/9/3 Takashi Yamanaka The University of Tokyo.
Picosecond Fiber Pulsed Laser Courtney Clarke Fermilab SIST Supervisors: Jinhao Ruan & Jamie Santucci 1.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. A schematic design of the all-dielectric polymer waveguide E-field sensor (a).
September 12-13, 2013 BNL Laser Profile, Energy and Space Charge Potential Monitor Deepak Raparia September 26, 2013.
Date of download: 6/30/2016 Copyright © 2016 SPIE. All rights reserved. Trans-cis conformational change of the azo-dyes under light irradiation. (a) Equivalent.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Latest Results on Beam Loaded Experiments at FLASH/TTF Shilun Pei October 27,
OptiSystem applications: Photodiode sensitivity modelling
Seeding in the presence of microbunching
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Integrated Semiconductor Modelocked Lasers
Optical Amplifier.
THD+N Estimation Accurate SNR and THD estimation
Sandis Spolitis, Inna Kurbatska, Vjaceslavs Bobrovs
Dr. Clincy Professor of CS
W. Ali, R. Corsini, E. Ciaramella SSSA Pisa Italy
BC2 Commissioning Parameters
DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER
Discussion today Using Lumerical INTERCONNECT we will simulate a full 50Gbps (25Gbps X 2) 2-channel WDM optical link. Today we will look at the following:
Numerical Solution/Simulation
Telecommunications Engineering Topic 2: Modulation and FDMA
Graphing Techniques.
GoldExperience 통신공학설계실험 Kim Hyun Tai
COMMUNICATION ENG. PROF. A.M.ALLAM
Studies of Emittance & Lifetime
Synthetic Sapphire Absorbance at 1064 nm
Injector Topics for Discussion
Device test stations Multi-probe electrical DC injection and optical input/output Near-field measurement Analogue characteristics 1) 50GHz Network analyzer,
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Injector Drive Laser Technical Status
Detecting phase Alexandra Andersson Jonathan Sladen
Presentation transcript:

Recent Updates: New Picosecond Pulsed Fiber Laser (PSL) By: Courtney Clarke

Last week’s work… Progress: – Setup – Initial Optimum Value readings (Manual) Issues with: – RF Drive Power low 1.48 dBm  rather than 5 dBm – Power Issues – Could not see expected signal in Optical Spectrum Analyzer(OSA) – Other parameters good – Main testing i.e. Jitter, Pulse width, wavelength, bandwidth, power, waist, repetition rate

Last week’s work… PM100 reader: % s=serial('COM19','BaudRate',115200,'Databits',8); %might need to change COM20 set(s,'FlowControl','hardware') set(s,'Terminator',{'CR/LF','LF'}) fopen(s) % timeend=60*60*24; %set the duration in seconds iter=2; tic; time=[]; u=[]; while (1) fprintf(s,':POWER?') tmp=fread(s,14); pause(1); y=char(tmp'); u(end+1)=str2num(y); time(end+1)=toc; plot(time,u,'*'),xlabel('time (s)'),ylabel('power (W)'),title('Time VS. Power'); hold on if(mod(iter,15)==0) save('testpower.mat','time','u') end if time(end)>=timeend, break, end iter=iter+1; end disp('The time of the whole cycle is: '),time(end) Error Curve Fitting: %error curve fitting load('testpower_12.mat'); %load the mat file time_final_hours=ceil(time(end)/(60*60)) least=polyfit(time,u,1); %do a linear last squares fit least(1)*x+least(2); %creates best fit line subplot(2,1,1), plot(time,f(time),'r',time,u), xlabel('time (s)'),ylabel('Power (W)'),title({'Hours: ';time_final_hours}); %change to mW grid on text(time(end)*.89/2,max(u),'Slope: '); text(time(end)/2,max(u),num2str(least(1))); text(time(end)*1.13/2,max(u),'(W/s)'); legend('Least squares line','Data'); RMS=sqrt(mean(u.^2)) mean_value=mean(u) standard_deviation=std(u) slope=least(1) percent_drop_in_1_day=slope*60*60*24*100/u(1) for i=1:length(u) SNR=f(time(i))/u(i); %signal to noise ratio SNRdb=10*log10(SNR); end subplot(2,1,2), loglog(time,SNRdb,'m'), xlabel('time (s)'), ylabel('SNR (db)'),title('Signal-to-Noise Ratio');

Last week’s work… Plots for 1 hour and 12 hours running:

Last week’s work… AMPLFIER PUMP CURRENT (mA) VS POWER (mW) MODULATOR BIAS (V) VS POWER (mW) **The gets progressive lower than the trend produce by Calmar Lasers**

Other Projects Beam waist locator on Matlab Beam spot size along z axis on Matlab Future Work: – Fourier Transform Program – Power Measurements of the current laser system for comparison – Primary testing