Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar.

Slides:



Advertisements
Similar presentations
Date of download: 5/27/2016 Copyright © ASME. All rights reserved. From: Fine Tuning Total Knee Replacement Contact Force Prediction Algorithms Using Blinded.
Advertisements

Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: The Impact of Weld Metal Creep Strength on the Overall Creep Strength of 9% Cr.
Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Development and Validation of a Computed Tomography-Based Methodology to Measure.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Computational Prediction of Muscle Moments During ARED Squat Exercise on the International.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: Numerical Study of Cerebroarterial Hemodynamic Changes Following Carotid Artery.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: The Effect of Size and Location of Tears in the Supraspinatus Tendon on Potential.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Movement of the Distal Carpal Row During Narrowing and Widening of the Carpal Arch.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Effect of Calibration Method on Tekscan Sensor Accuracy J Biomech Eng. 2008;131(3):
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Dynamic Modeling of a Six Degree-of-Freedom Flight Simulator Motion Base J. Comput.
Date of download: 11/13/2016 Copyright © ASME. All rights reserved. From: Effects of Prosthetic Mismatch and Subscapularis Tear on Glenohumeral Contact.
Date of download: 9/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
From: Design and Implementation of a Leg–Wheel Robot: Transleg
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
From: Effect of ACL Deficiency on MCL Strains and Joint Kinematics
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
From: Design of a Linkage System to Write in Cursive
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
From: Hemodynamics of the Mouse Abdominal Aortic Aneurysm
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
From: Design of Axially Graded Columns Under a Central Force
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
From: Interactive Feature Modeling for Reverse Engineering
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/6/2018 Copyright © ASME. All rights reserved.
Date of download: 1/15/2018 Copyright © ASME. All rights reserved.
Date of download: 11/27/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Musculoskeletal model in opensim (left), based on the lumbar spine model of Christophy et al. [6]. Each of the five lumbar intervertebral joints (L1–L2 to L5-S1, center) was implemented with 6DOFs (three translational and three rotational), with joint stiffness defined by a 6 × 6 stiffness matrix (right). Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Flowcharts of the algorithms for determining intervertebral rotations (left) and translations (right) in opensim and matlab. When the simulation begins, the desired overall angle is entered, and initial intervertebral translations set to 0. New values for individual intervertebral angles, Ratio T, and intervertebral translations are adjusted until the value of Ratio T is constant at all levels and intervertebral actuator forces are < 0.01 N. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Convergence of intervertebral translation determination algorithm for a simulation of 22 deg of flexion, showing ActuatorForce (solid line) and bushing force (dashed line) in the axial direction. Simulation starts with zero translation input, producing large errors (ActuatorForce), but these errors rapidly converge to < 0.01 N in nine cycles. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Effects of flexion stiffness (a), anterior–posterior (A-P) translational stiffness (b), and superior–inferior (S-I) translational stiffness (c) on compressive joint reaction force at level L4–L5 during 22 deg of flexion. The symbols indicate mean measured stiffness values, while lines indicate realistic ranges of stiffness based on measurements. The dotted line indicates expected compressive joint reaction force of 500 N estimated based on measured disk pressure reported by Wilke et al. [34]. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Effects of flexion stiffness (a), anterior–posterior (A-P) translational stiffness (b), and superior–inferior (S-I) translational stiffness (c) on A-P (left) and S-I (right) intervertebral translations at level L4–L5 during 45 deg of flexion. The symbols indicate mean measured stiffness values, while lines indicate realistic ranges of stiffness based on measurements. Dotted lines and shaded regions are the mean ± 1SD of in vivo intervertebral translations at level L4–L5 measured by Wu et al. [12]. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Effects of flexion stiffness (a), anterior–posterior (A-P) translational stiffness (b), and superior–inferior (S-I) translational stiffness (c) on intervertebral flexion angle at level L4-L5 during 45 deg of flexion. The symbols indicate mean measured stiffness values, while lines indicate realistic ranges of stiffness based on measurements. Figure Legend:

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures J Biomech Eng. 2015;137(10): doi: / Intervertebral flexion angles by level estimated using coupled and uncoupled stiffness and measured by Wu et al. [12]. Error bar for measured values is + 1 SD, while error bars for model estimates show ranges found with parametric variations of L4–L5 stiffness during 45 deg of flexion. Figure Legend: