Experimental Reconstruction of Primary Hot Fragment at Fermi Energy Heavy Ion collisions R. Wada, W. Lin, Z. Chen IMP, China 1986.6 – 2010.12 in JBN group.

Slides:



Advertisements
Similar presentations
Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Advertisements

Marina Barbui Trento, Italy, April 7-11, 2014
Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Isospin dependence of nucleus-nucleus collisions
Isospin effect in the projectile fragmentation of calcium isotopes and a possible experimental observable? Chun-Wang Ma Department of Physics, Henan Normal.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
Systematics of Temperature Measurements with ALADIN ALADIN S114 Spring 1993.
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
Determination of freeze-out temperatures Excellent consistency with thermal equilibrium for central collisions near the multi-fragmentation threshold Deduced.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
For more information about the facility visit: For more information about our group visit:
Using GEMINI to study multiplicity distributions of Light Particles Adil Bahalim Davidson College Summer REU 2005 – TAMU Cyclotron Institute.
Adil Bahalim Davidson College Dr. Joseph Natowitz (Advisor), Dr. Seweryn Kowalski (Mentor) Summer REU 2005 – TAMU Cyclotron Institute Reconstruction Main.
FUSTIPEN - Caen – 13/10/2014 L. Tassan-Got Fission fragment angular distribution and isotopic distributions Fission fragment angular distributions and.
A MODEL FOR PROJECTILE FRAGMENTATION Collaborators: S. Mallik, VECC, India S. Das Gupta, McGill University, Canada 1 Gargi Chaudhuri.
First simulations of FAZIA Napoli 3-5 September 2007.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
Isospin dependence of the nuclear phase transition near the critical point Zhiqiang Chen Institute of Modern Physics (Lanzhou) Chinese Academy of Sciences.
- Mid-rapidity emission in heavy ion collisions at intermediate energies - Source reconstruction - Free nucleon multiplicities - Neutron/proton ratio of.
Nuclear Level Densities Edwards Accelerator Laboratory Steven M. Grimes Ohio University Athens, Ohio.
J.B. Natowitz. Correlations – Cluster Formation Bose Condensates Efimov States Superfluidity Perfect Liquid? Perfect Gas ? Few Body Syst.Suppl. 14 (2003)
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Laura Francalanza Collaborazione EXOCHIM INFN Sezione di Catania - LNS.
Recent results on the symmetry energy from GANIL A.Chbihi GANIL Why studying E sym in Fission Extracting E sym from isotopic distribution of FF Influence.
J. Su( 苏军 ) and F.S. Zhang( 张丰收 ) College of Nuclear Science and Technology Beijing Normal University, Beijing, China Tel: ,
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
Status of the Subtask 6 Heavy ion reactions in the Fermi-energy domain M. Veselsky, IoP SASc Bratislava Main.
Motivation Current status Outlook This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy:
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
J. B. Natowitz Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station Experimental Investigations of The Equation of State.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
The 13th National Nuclear Structure Conference of China, Chifeng Fragments cross section distributions of even Ca at intermediate energy 马春旺
Content 1.Introduction 2.Statistical Multifragmentation Model 3.Angular momentum and Coulomb effects for hot fragments in peripheral HIC at Fermi energies.
Z.Q. Feng( 冯兆庆 ), W.F. Li( 李文飞 ), Z.Y. Ming( 明照宇 ), L.W. Chen( 陈列文 ), F. S. Zhang ( 张丰收 ) Institute of Low Energy Nuclear Physics Beijing Normal University.
Signals of bimodality in fragmentation induced by 3.65 A GeV 12C B.Grabez Institute of Physics Zemun.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel WPCF 2013 Acireale, Italy 7-Nov-2013 Clustering and Low Density.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Two-proton simultaneous emission from 29 S C.J. Lin 1, G.L. Zhang 1, F. Yang 1, H.Q. Zhang 1, Z.H. Liu 1, C.L. Zhang 1, P. Zhou 1, X.K. Wu 1, X.X. Xu 1,
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Chun-Wang Ma( 马春旺 ) Henan Normal University 河南师范大学 (
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Joseph B. Natowitz, Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA Exploring Clustering in Near.
Ternary Fission and Neck Fragmentation
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
World Consensus Initiative 2005
Jiansong Wang for NIMROD Collaboration
Isospin observables Observables
Cyclotron Institute, Texas A&M University
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
K. Hagel IWNDT 2013 College Station, Texas 20-Aug-2013
Nuclear Reactions --Part 2
Tests of the Supernova Equation of State using Heavy Ion Collisions
Daniela Henzlova GSI-Darmstadt, Germany
The Mass and Isotope Distribution of Limiting Temperatures
Probing correlations by use of two-nucleon removal
Presentation transcript:

Experimental Reconstruction of Primary Hot Fragment at Fermi Energy Heavy Ion collisions R. Wada, W. Lin, Z. Chen IMP, China – in JBN group IMP

Intermediate Heavy Ion Reaction – Central collisions Reaction time Experiments PrimarySecondary

Uncorrelated LP v n Kinematical focusing IMF Detector IMF Correlated LP

Black Histogram: Exp. Red: individual isotope Green : linear BG Blue: total Isotope 20 o64 Zn+ 112 Sn at 40 A 20 o 20 o

data Total Uncorr(kM n (Li)) Corr(M n ( 23 Na)) 4.5≤V IMF <5.5 cm/ns 3.5≤V IMF <4.5 cm/ns 5.5≤V IMF <6.5 cm/ns θ IMF-n =15 o 45 o 35o35o 25o25o Neutrons with 23 Na

Extracted Multiplicities Neutrons

A. Excitation energy of the primary fragments is reconstructed by (i =n,p,d,t,α) 1. = 2T, (surface type Maxwellian) 2.M i is generated by a Monte Carlo method, using the multiplicity distribution from GEMINI simulation. 3.E γ (energy carried away by gamma emissions) is evaluated by GEMINI simulation.

Ex(A MeV) Exp Reconstructed Ex (Exp.) and Ex of primary fragments (AMD,SMM) Be S A -1/3

A. Excitation energy of the primary fragments is reconstructed by (i =n,p,d,t,α) 1. = 2T, 2.M i is generated by Monte Carlo method, using the multiplicity distribution from GEMINI simulation. 3.E γ (energy carried away by gamma emission) is evaluated by GEMINI simulation. B. Mass and charge of the primary fragments is reconstructed by A hot = M i + A cold (i =n,p,d,t,α) AiAi Z hot = ZiZi M i + Z cold

Reconstructed multiplicity distribution Exp. Reconstructed AMD primary 64 Zn A MeV

64 Zn+ 112 Sn 64 Ni+ 124 Sn Predicted associated neutron multiplicity Z=10 0

Neutrons with 23 Na (5.5 <v IMF <6.5 ) 64 Ni+ 124 Sn 64 Zn+ 112 Sn 15 o 25 o 35 o 45 o -2

64 Zn+ 112 Sn 64 Ni+ 124 Sn Neutrons

Exp Reconstructed Ex (Exp.) and Ex of AMD primary fragments Ex (A MeV) 64 Zn+ 112 Sn

Coalescence technique : d 2 (I,j) = ν(r i -r j ) 2 + ((1/2Ћ) 2 /ν)(p i -p j ) 2 < Rc 2 ν = 0.16 fm -2 Z= Sn (MeV) A 0 0 Exp. AMD Ex (A MeV) 15 5 Z=10

Exp Ex (A MeV) 64 Zn+ 112 Sn C.W.Ma et al., CPL Vol. 29, No. 6 (2012)

Summary 1. Excitation energy and multiplicity of the primary hot fragments are reconstructed using a kinematical focusing technique. 2. Reconstructed Multiplicity distributions are well reproduced by the AMD primary isotope distributions. 3. Reconstructed excitation energies are not well reproduced by the AMD primary nor SMM prediction. Reconstructed excitation energy show a significant decrease as a function of isotope mass A for a given Z. 5. Very neutron rich isotopes may provide a good probe to study the hot nuclear matter in a point of least sequential decay disturbance. 4. Coalescence method may need to take into account the effect of neutron (or proton) separation energy for neutron rich ( or proton rich) isotopes.

W. Lin (IMP) R. Wada (IMP) M. Huang (IMP) Z. Chen (IMP) X. Liu (IMP) M. Rodorigus ( Instituto de Fisica, Universidade de São Paulo ) J. B. Natowitz (TAMU) K. Hagel (TAMU) A. Bonasera (TAMU) M. Barbui (TAMU) C. Bottosso (TAMU) K. J. Schmidt (Silesia Univ. Poland) S. Kowalski (Silesia Univ. Poland) Th. Keutgen (Univ. Cathoric de Louvain, Belgium) Thank you for your attention

64 Zn+ 58 Ni,

History to work with Joe Join JBN group – ANL : CN decay SARA- AMPHORA : Multifragmentation, Caloric curve TAMU K-500 : Reaction dynamics, Caloric Curve, Symmetry energy BRAHMS : RHIC physics publications in major journals : (BRAHMS) present IMP, LANZHOU

IMF n IMF Detector n LP Detectors Kinematical focusing

Correlated LP Kinematical focusing Correlated LP Uncorrelated LP v

Zn 47 A MeV Experiment IMF 20 o μm Projectiles: 64 Zn, 64 Ni, 70 Zn at 40 A MeV Target : 58,64 Ni, 112,124 Sn, 197 Au, 232 Th 64 Zn+ 112 Sn at 40 A MeV

Exp. vs AMD-Gemini Semi-violent collisions 16 O

N.Marie et al., PRC 58, 256, 1998 S.Hudan et al., PRC 67, , 2003 Gemini Exp p d t h α 32 A MeV 39 A MeV 45 A MeV 50 A MeV

data Total Uncorr(kM n (Li)) Corr(M n ( 23 Na)) 4.5≤V IMF <5.5 cm/ns 3.5≤V IMF <4.5 cm/ns 5.5≤V IMF <6.5 cm/ns 15 o 25 o 45 o 35o35o θ IMF-n

T (MeV)

64 Ni+ 124 Sm 64 Zn+ 112 Sm 64 Zn+ 112 Sn 64 Ni+ 124 Sn Exp. 64 Zn+ 112 Sn : 64 Ni+ 124 Sn

Isotope distribution at 300fm/c He Li Be B C O Ne Mg SiS Ar 17 C Note: All isotopes are generated in very neutron rich side 34 Mg

(μ n - μ p )/T a c /T Exp AMD Primary Reconstructed (0.40 ) 0.12 (μ n - μ p )/T and Coulomb parameters ln[R(1,-1,A)] = 2a c ·(Z-1)/A 1/3 /T + (μ n - μ p )/T I = ̶ 1 : even-odd: R(1,-1,A) = exp{ 2a c ·(Z-1)/A 1/3 /T } · exp[(μ n - μ p )/T] R(I+2,I,A) = exp{ [2a c ·(Z-1)/A 1/3 – a sym ·4(I+1)/A– δ(N+1,Z-1) + δ(N,Z)]/T } · exp[(μ n - μ p )/T]

a sym = c (V ) sym (1 − c (S) sym /c (V ) sym A 1/3 ): = c (V ) sym (1 − κ S/V /A 1/3 ) c (V ) sym c (V ) sym κ S/V AMD primary 7.9± ± (T=5) 39.5 MeV 40 MeV Reconstructed 4.4± ± ± 2.0 (T=5) 16.5 MeV g.s. BE 32± ± (H. Jiang et al. PRC85, (2012) )

Power law behavior of the reconstructed fragments

Summary 1. Excitation energy and multiplicity of the primary hot fragments are reconstructed using a kinematical focusing technique. 2. Reconstructed Multiplicity distributions are well reproduced by the AMD primary isotope distributions. 3. Reconstructed excitation energies are not well reproduced by the AMD primary nor SMM prediction. Reconstructed excitation energy show a significant decrease as a function of isotope mass A for a given Z. 4. Coalescence method may need to take into account the effect of neutron (or proton) separation energy for neutron rich ( or proton rich) isotopes. 5. Very neutron rich isotopes may be in a very low excitation energy when they are formed and less disturbed by the sequential decay effect. This suggests that neutron rich isotopes provide a good probe to study the hot nuclear matter in a point of least sequential decay disturbance.