Linac Design: Single-Spoke Cavities.

Slides:



Advertisements
Similar presentations
Beam Dynamics in MeRHIC Yue Hao On behalf of MeRHIC/eRHIC working group.
Advertisements

Juliette PLOUIN – CEA/SaclayCARE’08, 3 December /21 Superconducting Cavity activities within HIPPI CARE ‘08 CERN, 2-5 December 2008 Juliette PLOUIN.
ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011.
Development of SC Spoke Resonators at FNAL
Normal-Conducting Photoinjector for High Power CW FEL Sergey Kurennoy, LANL, Los Alamos, NM, USA An RF photoinjector capable of producing high continuous.
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
Ion Accelerator Complex for MEIC January 28, 2010.
Part2: Cavities and Structures Modes in resonant cavity From a cavity to an accelerator Examples of structures JUAS 2015 Linacs-JB.Lallement - JUAS
Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)
The LHC: an Accelerated Overview Jonathan Walsh May 2, 2006.
June 23, 2005R. Garoby Introduction SPL+PDAC example Elements of comparison Linacs / Synchrotrons LINAC-BASED PROTON DRIVER.
Muon Collider Design Workshop, BNL Dec-09112/01/2009 C.W. Linac Options (talk not much different from talk at High Intensity Proton Accelerator Application.
1 Studies of electron cooling at DESY K. Balewski, R. Brinkmann, Ya. Derbenev, Yu. Martirosyan, K. Flöttmann, P. Wesolowski DESY M. Gentner, D. Husmann,
SINGLE-STAGE BUNCH COMPRESSOR FOR ILC-SB2009 Nikolay Solyak Fermilab GDE Baseline Assessment Workshop (BAW-2) SLAC, Jan , 2011 N.Solyak, Single-stage.
Ding Sun and David Wildman Fermilab Accelerator Advisory Committee
2.1 GHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL June 15, 2015 LEReC Warm Cavity Review Meeting  June 15, 2015.
Project X Injector Experiment (PXIE) Sergei Nagaitsev Dec 19, 2011.
Group 6 / A RF Test and Properties of a Superconducting Cavity Mattia Checchin, Fabien Eozénou, Teresa Martinez de Alvaro, Szabina Mikulás, Jens Steckert.
Beam Dynamics and Linac Simulation Petr Ostroumov Fermilab Accelerator Advisory Committee May 10 th – 12 th, 2006.
Overview and Status of the Fermilab High Intensity Neutrino Source R&D Program Giorgio Apollinari for Bob Webber.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
DTL Option for MEIC Ion Injection Jiquan Guo, Haipeng Wang Jlab 3/30/
Preliminary MEIC Ion Beam Formation Scheme Jiquan Guo for the MEIC design study team Oct. 5,
Comparison of Fermilab Proton Driver to Suggested Energy Amplifier Linac Bob Webber April 13, 2007.
Warm and Cold Ion Linac: Comparison and Optimization March 30, 2015.
Cryostat & LHC Tunnel Slava Yakovlev on behalf of the FNAL team: Nikolay Solyak, Tom Peterson, Ivan Gonin, and Timergali Khabibouline The 6 th LHC-CC webex.
LHC Cryostat evaluation Nikolay Solyak Thanks Rama Calaga, Tom Peterson, Slava Yakovlev, Ivan Gonin C11 workshop. FNAL, Oct 27-28, 2008.
Project X RD&D Plan 325 MHz Linac including High Intensity Neutrino Source (HINS) Program Bob Webber AAC Meeting February 3, 2009.
ESS AD RETREAT 5 th December 2011, Lund “A walk down the Linac” SPOKES Sébastien Bousson IPN Orsay.
Project X Collaboration Meeting, April 12-14, 2011 Spallation Neutron Source facility at Oak Ridge National Laboratory HOM Couplers for Project X: Are.
A.Saini, K.Ranjan, N.Solyak, S.Mishra, V.Yakovlev on the behalf of our team Feb. 8, 2011 Study of failure effects of elements in beam transport line &
Transverse kick of HWR and SSR2 Paolo Berrutti, Vyacheslav Yakovlev.
Overview of long pulse experiments at NML Nikolay Solyak PXIE Program Review January 16-17, PXIE Review, N.Solyak E.Harms, S. Nagaitsev, B. Chase,
CW Linac (ICD-2+): Lattice Design in Project-X, Nikolay Solyak (on behalf of team: F.Ostiguy, J-P.Carneiro, N.Perunov, A.Vostrikov, A.Saini, V.Yakovlev,
N.Solyak (on behalf of PrX team) Fermilab Project X Collaboration Meeting, FNAL, Oct.25-27, 2011 N.Solyak, Pulsed Linac1 PrX Collab. Meeting, FNAL, Oct.25-27,
A. FaccoEURISOL DS Orsay, 3 Feb 2005 Task 7 Proton Accelerator “The objective of the Proton Accelerator Task is the design a 5 mA CW, 1 GeV proton linac.
1 Project X Workshop November 21-22, 2008 Richard York Chris Compton Walter Hartung Xiaoyu Wu Michigan State University.
Project X High Power 325 MHz RF Distribution and Control Alfred Moretti, Nov 12, 2007 Project X Workshop.
CW Linac Lattice August, 29 N.Solyak, B.Shteynas.
A. FaccoEURISOL DS Task 7GANIL, 30 Nov 2005 EURISOL DS 2° Meeting Task 7 - Primary Accelerator GANIL, November 30, 2005 Summary of the Task 7 status New.
F Sergei Nagaitsev (FNAL) Webex meeting Oct ICD-2 chopper requirements and proposal #1.
ESS SC cavities development G. Devanz TTC meeting, march 1st 2011, Milano.
CW Linac: Optics with Quads or Doublets. N. Perunov and N.Solyak Nov.6, 2009.
HWR, SSR1 and SSR2 transverse kick summary Paolo Berrutti, Vyacheslav Yakovlev.
Bunch Shape Monitor for HINS Wai-Ming Tam Project X Collaboration Meeting September 11, 2009.
HOMs in high-energy part of the Project-X linac. V. Yakovlev, N. Solyak, J.-F. Ostiguy Friday 26 June 2009.
Coupler RF kick simulations.
Energy (ILC) and Intensity (Project X) SRF Cavity Needs
Physics design on the main linac
Progress in the Multi-Ion Injector Linac Design
A beam splitter for the Project X LHC Crab Cavity Meeting 11/15/2011
Acceleration of RIB using linacs
A. Plastun¹, B. Mustapha, Z. Conway and P. Ostroumov
Part2: Cavities and Structures
Notkestrasse 85, Hamburg, Germany
EffiCAS Efficient Facility for Ions at CAS
Case study 6 Properties and test of a Superconducting RF cavity
Electron Source Configuration
CEPC Injector positron source
Pulsed Ion Linac for EIC
Part2: Cavities and Structures
DESIGN OF THE HWR CAVITIES FOR SARAF
SC ISOL Linac of KoRIA Tae-Sun Park (SKKU).
MEBT1&2 design study for C-ADS
Physics Design on Injector I
ERL Director’s Review Main Linac
Status of the JLEIC Injector Linac Design
DTL for MEIC Ion Injection
Multi-Ion Injector Linac Design – Progress Summary
RF system for MEIC Ion Linac: SRF and Warm Options
Presentation transcript:

Linac Design: Single-Spoke Cavities. V. Yakovlev (on behalf of the Fermilab TD team: N. Solyak, I. Gonin, A. Lunin, N. Perunov, and T. Habibouline)

The schematic layout of ICD-2 accelerator complex Low-energy part: from 2.5 MeV to ~470 MeV

CW Linac: Energy: 2 GeV; Current: 1 mA average, 10 mA pulsed (100 ns trains, period 1000 ns) Beam dynamics close to HINS! Suggestion: same structure at 325 MHz and about the same break points as in HINS: Changes: CW RFQ and replace RT cavities with SC (1 family) 1.3 GHz linac is the same (S-ILC and ILC-1) with Eacc ~18 MV/m 1300 MHz S-ILC (0.42-1.2 GeV) ILC 1(1.2-2 GeV)

Break points in current design of HINS E, MeV  Type 0.05-2.5 0.073 RFQ, Pwall = 350 kW (pulsed) RT 2.5-10 0.073-0.146 RT (9 families), Pwall=360 kW (pulsed) SC 10-32 0.146-0.261 SSR1 (=0.22) OK 32-117 0.261-0.5 SSR2 (=0.4) 117-400 0.5-0.713 TSR (=0.6) For CW operation SC cavities are desired. No SC RFQ in operation for protons (80 MHz SRFQ for heavy ions operates for PIAVE linac) Choice: RT RFQ; RT CW Quarter-Wave or Half-Wave SC cavities for the energy from 2.5 MeV to 10 MeV.

Acceleration from 2.5 MeV to 10 MeV (1) Potential problem: Field asymmetry needs to be compensated : beam offset, dipole steering or shaping the gap Mechanical stability

Spoke or Half-Wave Resonator ? HWR: “Juelich-type” (left) and “ANL-type” (right) 176 MHz, β=0.14 Spoke and HWR performances are comparable 352 MHz =0.17, SC HWR (A. Facco, INFN) 352 MHz Possible CM design options normalized to: Bpk = 62 mT and Rs = 96:4 n.

One family of the QW cavities: QWR (β=0.097): 0.073< β<0.146 or 2.5MeV< E < 10 MeV; T > 0.85! Gradient ~ 6 MeV/m, or > 460 keV/cavity (ΔE=Gβλ<T>). Number of cavities = 16 (the same 16 RT in HINS) Gain > 0.46MeV per cavity, Total Gain = 7.5 MeV

Emax/Eacc/Emax/Eacc* F(MHz) 325 βoptimal 0.135 0.117 0.11 0.22 Rcavity,mm 210 191.5 180 245.6 R/Q, Ω 150 130 120 240 TTF, Average 0.891 0.944 0.953 0.952 Emax/Eacc/Emax/Eacc* 5.4/6.1 6.8/7.1 7.0/7.3 3.9/4.1 Hmax/Eacc/Hmax/Eacc* (mT/MV/m) 10.9/12.3 10.3/11 10.8/11.3 5.8/6.1 Deff =(2*βλ/2),mm 124.6 108 101.5 203 blue red Eacc*=Eacc(βoptimal)* TTF, Average green E Field B Field

Emax/Eacc/Emax/Eacc* F(MHz) 325 βoptimal 0.117 Rcavity,mm 191.7 R/Q, Ω 120 TTF, Average 0.94 Emax/Eacc/Emax/Eacc* 6.15/6.55 Hmax/Eacc/Hmax/Eacc* (mT/MV/m) 6.9/7.3 Deff(2*βλ/2),mm 108 OPTIMIZATION OF SSR β=0.117 E Field B Field Eacc*=Eacc(βoptimal)* TTF, Average

OPTIMIZATION OF SSR β=0.117 (cont.) Gain/Cavity vs beta Pink : Hmax = 59mT Green: RT Q0 vs. Eacc from the first cold test of SSR1-02. Maximal Eacc= 25 MeV/m @4K; 33MeV/m@2K At CW assume Eacc= 15 MeV/m that corresponds to: Emax= 40 MV/m and Hmax= 59 mT Based on experimental data it is possible to reduce number of cavities, if no limitation on beam dynamics

Emax/Eacc/Emax/Eacc* OPTIMIZATION OF HWR β=0.1 F(MHz) 225 βoptimal 0.1 Dcavity,mm 200 R/Q, Ω 80 TTF, Average 0.96 Emax/Eacc/Emax/Eacc* 6.2/6.5 Hmax/Eacc/Hmax/Eacc* (mT/MV/m) 6.5/6.8 Deff(2*βλ/2),mm 94 E Field B Field Eacc*=Eacc(βoptimal)* TTF, Average

Gain/Cavity vs beta Red : Hmax=59mT Green: RT Normalized Transit Time Factor vs beta MV Gain/Cavity vs beta Red : Hmax=59mT Green: RT beta

Slot Cylindrical Cavity, =0.11 Geo E field F(MHz) 362.3 R/Q 446 Emax/Eacc 7.32 Hmax/Eacc 11.4 (mT/MV/m) Deff=(4*βλ/2) 187.5mm H field

Slot Rectangular Cavity, beta=0.11 Geo E field F(MHz) 343.2 R/Q 455 Emax/Eacc 5.28 Hmax/Eacc 11.1 (mT/MV/m) Deff=(4*βλ/2) 187.5mm H field

Slot Finger Low beta Cavity, beta=0.08 Geo E field F(MHz) 342.3 R/Q 515 Emax/Eacc 9.95 Hmax/Eacc 11.3 (mT/MV/m) Deff(4*βλ/2) 136mm H field

Break points for low-energy part, 325 MHz Section Energy range MeV  Number of cavities/ lenses/CM Type of cavities and focusing element Power/cavity, kW (Iav=1 mA) Bunching SSR0 (G=0.11) 2.5 0.073 2/3/2 Single spoke cavity, Solenoid 0.5 2.5-10 0.073-0.146 16/16/2 Single spoke cavity, Solenoid SSR1 (G=0.22) 10-32 0.146-0.261 18/18/2 1.3 SSR2 (G=0.4) 32-117 0.261-0.5 33/17/3 4.1 TSR (G=0.6) 117-466 0.5-0.744 48/48/8 Triple spoke cavity, quads 8.5

Parameters of the single cavities SSR1 and SSR2, and triple – spoke cavities TSR. Cavity type F [MHz] Eacc [MV/m] Leff, mm Ep/Eacc Bp/Eacc mT/(MV/m) R/Q Ω G Ω Q0,2K 109 Q0,4K109 P2K [W] P4K [W] SSR0 325 8.7 72 4.1 4.6 120 57 9.5 0.7 0.34 4.67 SSR1 10.8 135 2.62 3.87 242 84 14.0 1.0 0.63 8.78 SSR2 13.6 246 2.42 3.95 322 112 18.0 1.3 1.93 26.74 TSR 9.75 943 3.22 6.85 554 117 19.0 1.4 8.03 108.99 Surface magnetic field in SSR0 – SSR2 is below 54 mT; Surface electric field in SSR0 – SSR2 is below 36 MV/m.

S-ILC ILC TSR SSR2 SSR0 SSR1

FNAL 325 MHz SSR1 cavity layout and photo. β=0.22

Q0 vs. Eacc from the first cold test of SSR1-02. Maximal Eacc= 25 MeV/m @4K; 33MeV/m@2K

Spoke Cavity. Surface resistance vs.T

FNAL 325 MHZ SSR2 cavity layout. β=0.4

Conclusions: Both single-spoke and half-wave resonators may be used directly in the initial stage of the acceleration instead of RT cavities; Present version of the SSR has higher r/Q than the HWR (120 Ohms versus 80 Ohms), but further optimization may reduce the difference; Both SSR and HWR may be used in the same structure at 325 MHz and same break points as in HINS; Further optimization of the cavity and the structure may reduce the number of cavities; Alternating – phase focusing may be helpful (more detailed studies are necessary); RF focusing may be used.