Bertram Blank CEN Bordeaux-Gradignan IVICFA 's Fridays: EXPERIMENTAL PHYSICS, October 3, 2014 Discovery of radioactive decays One-proton radioactivity.

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

Kurchatov Institute, Moscow
Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Measurement of the GMR and the GQR in unstable nuclei using the MAYA active target C. Monrozeau (Ph. D), E. Khan, Y. Blumenfeld.
N Network for Active Targets 12 institutions (France, Spain, UK, Germany, Poland) GANIL, France CENBG Bordeaux, France SPhN/DAPNIA/DSM Saclay, France IPN.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
What have we learned last time? Q value Binding energy Semiempirical binding energy formula Stability.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Down and Up Along the Proton Dripline Heavy One-Proton Emitter Light One-Proton Emitter Light Two-Proton Emitter Heavy Two Proton Emitter.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Production and Decay of Sub-U Isotopes by the Projectile Fragmentation of 1 A·GeV 238 U Experiment March, 2003 Zhong Liu University of Edinburgh.
TPC for 2p radioactivity studies Bertram Blank, CENBG.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Beta and particle decay spectroscopy at the Super FRS Zenon Janas Nuclear Spectroscopy Division Warsaw University.
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
Nuclear Level Densities Edwards Accelerator Laboratory Steven M. Grimes Ohio University Athens, Ohio.
EURISOL Instrumentation Reaching the drip lines Best way to reach drip lines: fragmentation or in-flight fission e.g. 48 Ni, 100 Sn, 78 Ni etc  fragment.
1 undressing (to fiddle the decay probability) keV gamma E0, 0 + ->0 + e - conversion decay E x =509 keV, T 1/2 ~20 ns Fully stripping.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
D. Suzuki Institut de Physique Nucléaire d’Orsay
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
Two-proton radioactivity: an experimentalist’s view Catalin Borcea CEN Bordeaux-Gradignan and IFIN-HH NANUF03, Bucharest September 7-12, 2003 Two proton.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Magnetic moment measurements with the high-velocity transient field (HVTF) technique at relativistic energies Andrea Jungclaus IEM-CSIC Madrid, Spain Andrew.
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
Progress in  half lives of nuclei approaching the r-process path at N=126 José Benlliure Universidad de Santiago de Compostela, Spain INPC 2007.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Production of Beams: - Stable beams from Be-U, 48 Ca ~ pps, 238 U ~ pps ~60 A.MeV for Ni -RIB in-target fragmentation Noble gas (i.e. 6 He.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Fusion of light halo nuclei
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Observation of new neutron-deficient multinucleon transfer reactions
Two-proton simultaneous emission from 29 S C.J. Lin 1, G.L. Zhang 1, F. Yang 1, H.Q. Zhang 1, Z.H. Liu 1, C.L. Zhang 1, P. Zhou 1, X.K. Wu 1, X.X. Xu 1,
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Study of the beta delayed particle emission from.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Nuclear structure experiments beyond the neutron dripline Unbound – resonance observed known to be unb ound 26 O 19,21 C 15 Be.
Technical solutions for N=Z Physics David Jenkins.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Measurement of the super-allowed branching ratio of 22 Mg B. Blank, M. Aouadi, P. Ascher, M. Gerbaux, J. Giovinazzo, T. Goigoux, S. Grévy, T. Kurtukian.
1 EUNPC2015Aug 30 - Sep 4, 2015 LIFETIME MEASUREMENTS TO STUDY THE NATURE OF EXCITED STATES BEYOND N=50 AGATA + GANIL Andrea Gottardo.
Bertram Blank – CENBG, Bordeaux, France Joint LIA COLL ‐ AGAIN, COPIGAL, and POLITA Workshop Catania, Italy, April 2016 Two-proton radioactivity.
Leonid Grigorenko Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia Advances and prospects in the theoretical studies of few-body decays 25th.
PANIC’08 Eilat, November 13th, 2008 Teresa Kurtukian Nieto CEN Bordeaux-Gradignan Supernova remnant N49 Photo Credit: Hubble Heritage Team (STScI / AURA),
Fusion excitation measurement for 20 O + 12 C at E/A = 1-2 MeV Indiana University M.J. Rudolph, Z.Q. Gosser, K. Brown ✼, D. Mercier, S. Hudan, R.T. de.
New proposal for the BRIKEN campaign
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
DSSSD for b decay investigations of heavy neutron-rich isotopes
Spectroscopy of open systems: proton emitters
Status and perspectives of the LNS-FRIBS facility
Presentation transcript:

Bertram Blank CEN Bordeaux-Gradignan IVICFA 's Fridays: EXPERIMENTAL PHYSICS, October 3, 2014 Discovery of radioactive decays One-proton radioactivity Two-proton radioactivity Future studies

… off the valley of stability stable nuclei

… off the valley of stability stable nuclei  unstable nuclei

… off the valley of stability stable nuclei  unstable nuclei particle-unstable nuclei

Henry BecquerelPierre & Marie CurieErnest RutherfordOtto Hahn  decay  decay Fission Discovery of radioactivity

Prdicted by Goldansky in the 60’s Discovered in 1981 Exotic radioactivities Goldansky 1960 : Y.B. Zel’dovich and V. Goldansky predict exotic decay modes for nuclei at the proton drip-line : 1p radioactivity for odd Z nuclei 2p radioactivity for even Z nuclei Discovered in 2002

One-proton radioactivity

Proton-rich nuclei: One-proton radioactivity One-proton- emitter for odd Z from Z =

FMA in Argonne Fusion-evaporation reactions (e.g. 78 Kr + 92 Mo) Separation and selection of nuclei with Argonne FMA Correlation of implantation and decay in DSSD One-proton radioactivity T 1/2, E p

physics to be learnt  Test of nuclear mass models Nuclear structure beyond particle stability - Sequence of single-particle levels and their energy - “j content” of nuclear wave function - Forme of nuclear potential quantum tunneling through 3D barrier model calculations to determine single- particle level sequence 29 proton emitters experimentally observed and studied One-proton radioactivity

Two-proton radioactivity

two 2p emission types: - ground state emission long-lived: 45 Fe, 48 Ni, 54 Zn short-lived: 6 Be, 12 O, 16 Ne, 19 Mg - emission from excited states β-delayed: 22 Al, 31 Ar, … others: 14 O, 18 Ne, 17 Ne to be measured: proton energies proton-proton angle sequential emission: three-body decay: 2 He emission: Two-proton radioactivity

Emission of one proton not possible « 2 He» emission: common tunneling separation after barrier Two-proton radioactivity X

parameters: Q value tunnel probability  -decay half-life best candidats: 45 Fe, 48 Ni, 54 Zn possible candidats: 42 Cr, 49 Ni Two-proton radioactivity candidates

Two-proton emission for even-Z nuclei Proton-rich nuclei

GSI GANIL Experimental facilities  projectile fragmentation NSCL

Two-proton radioactivity of 45 Fe at GANIL and GSI

Primary beam: MeV/A intensity  Ae SISSI target: nat Ni 200  g  cm  spectrometer LISE3 : degrader Be (50  m) Wien filter detection setup silicon telescope identification of implanted fragments DSSSD (X-Y): 2 x 16 x 3 mm - veto for light particles - residual energy, x-y position - energy loss - time of flight: micro-channel plate detectors RF cyclotron GANIL / LISE3

identification of Fe implantations identification of 45 Fe: Two-proton radioactivity of 45 Fe: GANIL data J. Giovinazzo et al., PRL 89 (2002)

Decay time spectrum  spectrum: T 1/2 = 16.7±7.0 ms 1.14 MeV peak J. Giovinazzo et al., PRL89 (2002)  Q value in agreement with prediction  no  pile-up for peak  half-life short enough for 2p decay  data for second decay in agreement with daughter decay  no  ’s in coincidence with 1.14 MeV peak Decay energy spectrum Two-proton radioactivity of 45 Fe: GANIL data

6 implantations M. Pfützner et al., EPJA14 (2002) 279 A/Z Energy (MeV) 5 correlated decay events: four 2p events one  -delayed decay Two-proton radioactivity of 45 Fe: GSI data

Q 2p = 1.14 MeV T 1/2 = 3.8 ms   discovery of two-proton radioactivity: 2002 Decay of 45 Fe

 2004 : Decay of 54 Zn and 48 Ni at GANIL with the same set-up 48 Ni 54 Zn B. Blank et al., Phys. Rev. Lett. 94 (2005) C. Dossat et al, Phys. Rev. C 75 (2005) Two-proton decay of 54 Zn and 48 Ni

Grigorenko et al. Brown and Barker Rotureau et al. agreement with 3-body model, SMEC, and R-matrix model Comparison with theory 45 Fe 48 Ni 54 Zn

However: - only total decay energy, half-life, no beta, daughter decay - no individual energies - no proton-proton angle TPC new development… what one would like to measure: - individual protons - proton energies - proton-proton angle

 Gas ionisation  Drift of electrons  Detection on the X-Y plan ion identification drift of ionisation electrons emitter protons X-Y detector electric field  Tracking in 3D ! Energy signals Track particle in 2D + Time signals Z component B. Blank et al, Nucl. Instr. And Meth. A 613 (2010) 65 Time projection chamber

GANIL/LISE3 experiments with the TPC Time projection chamber

Two-proton radioactivity of 45 Fe at GANIL with the TPC

Y strip numberX strip number Energy signal (a.u.) Y strip number X strip number Energy signal (a.u.) Analysis of TPC events X proton2 proton1 beam Y Z Implantation Decay

45 Fe two-proton event in TPC of CENBG L. Audirac et al.

45 Fe two-proton event in TPC of CENBG L. Audirac et al.

45 Fe two-proton event in TPC of CENBG L. Audirac et al.

45 Fe two-proton event in TPC of CENBG L. Audirac et al.

average = 50% sigma = 7,2 %  perfect energy sharing between the two protons energy fraction (%) Energy sharing between the two protons Grigorenko et al. exp.

A two-hump structure is observed, as predicted by the model of Grigorenko 3D angular distribution of the two protons L. Audirac et al., EPJA 48 (2012) 179

Two-proton radioactivity of 45 Fe at NSCL with the OTPC

45 Fe Daughter decay 2p M. Pfützner et al. Daughter decay 45 Fe two-proton events in OTPC of Warsaw at NCSL

K. Miernik et al., PRL 99 (2007) Fe two-proton correlations with OTPC at NSCL

Two-proton radioactivity of 54 Zn at GANIL with the TPC

P. Ascher et al. 54 Zn two-proton event in TPC of CENBG

P. Ascher et al. 54 Zn two-proton event in TPC of CENBG

P. Ascher et al. 54 Zn two-proton event in TPC of CENBG

P. Ascher et al. 54 Zn two-proton event in TPC of CENBG

P. Ascher et al. 54 Zn two-proton event in TPC of CENBG

P. Ascher et al. 54 Zn two-proton event in TPC of CENBG

 perfect energy sharing between the two protons perfect agreement with 3-body model (L.V. Grigorenko et al.) Energy sharing between the two protons P. Ascher et al., PRL 107 (2011)

 3D angular distribution from 3 -body model of Grigorenko et al. Projected angle between the two protons P. Ascher et al.  strong p 2 content  study of the wave function

Conclusions observation of 2p radioactivity Q values  mass model tests test of wave function  strong p 2 contribution, not expected in simple SM

Nuclei of interest: 59 Ge, 63 Se, 67 Kr Production: 78 Kr fragmentation at 360 MeV/u, 100pnA Separation: BigRIPS Detection: standard BigRIPS detection + silicon telescope with DSSSD (1mm) + Germanium detectors Settings: 59 Ge, rate = 9 ppd Settings: 63 Se, rate = 6 ppd Settings: 67 Kr, rate = 4 ppd New isotopes: 59 Ge, 63 Se, 68,67 Kr

New TPC based on ASICs and a pad structure J. Pibernat, CENBG  General electronics for TPCs: GET  channels

demonstratorprototype 2048 channels (12.8 x 6.4 cm 2 ; 2 CoBo ; 8 AsAd) full-size detector16384 pads (16 CoBo ; 64 AsAd) various geometries (for 2-proton radioactivity or reaction studies) schematic view of the detector for 2-proton radioactivity studies Demonstrator and full-size detector

5*10 11 pps of primary beam, 600 MeV/A, 4 sec per pulse 4 g/cm 2 of Be 58 Ni: 48 Ni: 7*10 -4 pps  70 per day 78 Kr: 59 Ge: 1*10 -2 pps  1000 per day 63 Se: 5*10 -3 pps  500 per day 67 Kr: 2*10 -3 pps  200 per day 92 Mo: 70 Sr: 5*10 -5 pps  5 per day 71 Sr: 1*10 -3 pps  100 per day 74 Zr: 2*10 -5 pps  2 per day 75 Zr: 6*10 -4 pps  60 per day 78 Mo: 6*10 -6 pps  0.6 per day 79 Mo: 1*10 -4 pps  10 per day 124 Xe: 97 Sn: 6*10 -6 pps  0.6 per day 98 Sn: 1*10 -4 pps  10 per day FAIR + SFRS … 2020…? Wie Brezelbacken….

Collaborations GANIL experiments CEN Bordeaux-Gradignan (France) GANIL Caen (France) IAP Bucharest (Romania) Warsaw University (Poland) NSCL-MSU (USA) University of Santiago di Compostella (Spain) IPN Orsay (France) LPC Caen (France) KU Leuven (Belgium) GANIL experiments CEN Bordeaux-Gradignan (France) GANIL Caen (France) IAP Bucharest (Romania) Warsaw University (Poland) NSCL-MSU (USA) University of Santiago di Compostella (Spain) IPN Orsay (France) LPC Caen (France) KU Leuven (Belgium) GSI experiment Warsaw University (Poland), GSI Darmstadt (Allemagne), CEN Bordeaux-Gradignan (France), GANIL Caen (France), ORNL (Tennessee / USA), Edinburg University (UK) GSI experiment Warsaw University (Poland), GSI Darmstadt (Allemagne), CEN Bordeaux-Gradignan (France), GANIL Caen (France), ORNL (Tennessee / USA), Edinburg University (UK) MSU experiment Warsaw University (Poland), MSU (USA), ORNL (Tennessee / USA), University of Tennessee (USA) MSU experiment Warsaw University (Poland), MSU (USA), ORNL (Tennessee / USA), University of Tennessee (USA)