Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, FRANCE Aerosols spatial distribution (vertical / horizontal) using.

Slides:



Advertisements
Similar presentations
J.L. Rajot (1,2), B. Marticorena (2), P. Formenti (2), S. Alfaro (2), B. Chatenet (2), F. Dulac (2,3), K. Desboeufs (2) S. Caquineau (4), M. Maille (2)
Advertisements

UPRM Lidar lab for atmospheric research 1- Cross validation of solar radiation using remote sensing equipment & GOES Lidar and Ceilometer validation.
Smoke plume optical properties and transport observed by a multi-wavelength lidar, sunphotometer and satellite Lina Cordero a,b Yonghua Wu a,b, Barry Gross.
EARLINET-ASOS Symposium 20 September 2010, Geneva, Switzerland EARLINET climatology Lucia Mona Istituto di Metodologie per l’Analisi Ambientale CNR-IMAA,
The EvK2 Pyramid and the AERONET network “Atmospheric Brown Cloud" Characterization via Sunphotometer Observations G.P. Gobbi, F. Barnaba, and F. Angelini.
2005 CHIMERE Workshop1 Project : Regional applications of CHIMERE in the Nord Pas de Calais Nollet Valérie, PC2A, UMR 8522, Université des Sciences et.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
1 Cloud Droplet Size Retrievals from AERONET Cloud Mode Observations Christine Chiu Stefani Huang, Alexander Marshak, Tamas Várnai, Brent Holben, Warren.
TReSS (Transportable Remote Sensing Station) in Tamanrasset Overview of TReSS Status of implementation on April 1 st 2006 Operations in the framework of.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
PACE AEROSOL CAL/VAL Cameron McNaughton Golder Associates Ltd.
Ben Kravitz November 5, 2009 LIDAR. What is LIDAR? Stands for LIght Detection And Ranging Micropulse LASERs Measurements of (usually) backscatter from.
New sensors and models for complex environmental conditions John N. Porter University of Hawaii.
Science Objectives for the ATHENA-OAWL Venture Tech Airborne Mission M. Hardesty CIRES University of Colorado/NOAA S. Tucker and C. Weimer Ball Aerospace.
VRAME: Vertically Resolved Aerosol Model for Europe from a Synergy of EARLINET and AERONET data Elina Giannakaki, Ina Mattis, Detlef Müller, Olaf Krüger.
NASA Ames: P. Russell, J. Redemann, S. Dunagan, R. Johnson, J. Zavaleta PNNL: B. Schmid, C. Flynn, E. Kassianov NASA GSFC: AERONET Team A collaboration.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Intercomparison of satellite retrieved aerosol optical depth over ocean Gunnar Myhre 1,2 Frode Stordal 1,2 Mona Johnsrud 1 Alexander Ignatov 3 Michael.
20 – 24 October, th Intl. ChArMEx workshop, Trieste, Italy 1/18 Variability of Mediterranean aerosols properties at three regional background sites.
Active Microwave and LIDAR. Three models for remote sensing 1. Passive-Reflective: Sensors that rely on EM energy emitted by the sun to illuminate the.
Summer Institute in Earth Sciences 2009 Comparison of GEOS-5 Model to MPLNET Aerosol Data Bryon J. Baumstarck Departments of Physics, Computer Science,
Trace gas and AOD retrievals from a newly deployed hyper-spectral airborne sun/sky photometer (4STAR) M. Segal-Rosenheimer, C.J. Flynn, J. Redemann, B.
Aerosol Optical Depths from Airborne Sunphotometry in INTEX-B/MILAGRO as a Validation Tool for the Ozone Monitoring Instrument (OMI) on Aura J. Livingston.
The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS)
Page 1 Validation by Balloons and Aircraft - ESRIN - 9– 13 December 2002 Observations of aerosol and clouds obtained during the M-55 Geophysica ENVISAT.
Latest results on the comparison between OMI and ground-based data at two European sites (Rome and Villeneuve d’Ascq) Virginie Buchard, Colette Brogniez,
The first decade OMI Near UV aerosol observations: An A-train algorithm Assessment of AOD and SSA The long-term OMAERUV record Omar Torres, Changwoo Ahn,
4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research Development and Results from First Test-flights A collaboration involving: PNNL:
Figure 1. (left) Direct comparison of CCN concentration adjusted to 0.4% supersaturation and 499 nm AOD, both observed from ≤1 km altitudes during ARCTAS.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Observations of aerosol concentration, properties and chemical composition Sandro Fuzzi Institute for Atmospheric Sciences and Climate National Research.
AERONET Processing Algorithms Refinement AERONET Workshop May , 2004, El Arenosillo, Spain.
1 Ground-based Remote Sensing of Aerosols Pawan K Bhartia Laboratory for Atmospheres NASA Goddard Space Flight Center Maryland, USA.
4STAR: Spectrometer for Sky-Scanning, Sun- Tracking Atmospheric Research Results from Test-flight Series PNNLNASA AmesNASA GSFC B. SchmidS. DunaganS. Sinyuk.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements* P.
NASA’s Coastal and Ocean Airborne Science Testbed (COAST) L. Guild 1 *, J. Dungan 1, M. Edwards 1, P. Russell 1, S. Hooker 2, J. Myers 3, J. Morrow 4,
4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research A collaboration involving: PNNL: Connor J. Flynn, B. Schmid, E. Kassianov NASA.
A new method for first-principles calibration
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
II GALION workshop - Geneva, Switzerland – September 21-23, 2010 EARLINET contribution to SDS-WAS Europe – North Africa regional node Lucia Mona Istituto.
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Review of PM2.5/AOD Relationships
Airborne in-situ measurements of transported mineral dust aerosols in the Mediterranean region 1 Cyrielle Denjean *, Paola Formenti, Claudia Di Biagio,
AERONET DRAGON Campaign, Summer 2011 Christina Justice College Park Scholars – Science & Global Change Program Environmental Science and Policy
Airborne Sunphotometry and Closure Studies during the SAFARI-2000 Dry Season Campaign B. Schmid BAER/NASA Ames Research Center, Moffett Field, CA, USA.
Airborne Sunphotometry and Closure Studies in the SAFARI-2000 Dry Season Campaign B. Schmid 1, P.B. Russell 2, P.Pilewskie 2, J. Redemann 1, P.V. Hobbs.
Radiative transfer simulations of the ATR-42 SW and LW irradiance profiles above Lampedusa Island Daniela Meloni with contributions from: ChArMEx/ADRIMED.
Intercomparison of satellite retrieved aerosol optical depth over ocean G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev,
AERONET: New Aerosol products, data access, and reanalysis of data for mixtures of fine and coarse mode aerosols Brent Holben 1 Tom Eck 1, Oleg Dubovik.
The Use of Spectral and Angular Information In Remote Sensing
Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Earth Science Division - NASA Ames Research Center 2006 A concept for a sun-sky.
INSIGHTS FROM CAR AIRBORNE MEASUREMENTS DURING INTEX-B (Mexico) FOR SATELLITE VALIDATION C. K. Gatebe, 1,2 Michael D. King, 2 G.T. Arnold, 1,3 O. Dubovik,
J. Redemann 1, B. Schmid 1, J.A. Eilers 2, R. Kahn 3, R.C. Levy 4,5, P.B. Russell 2, J.M. Livingston 6, P.V. Hobbs 7, W.L. Smith Jr. 8, B.N. Holben 4 1.
Jens Redemann 1, B. Schmid 1, J. M. Livingston 2, P. B. Russell 3, J. A. Eilers 3, P. V. Hobbs 4, R. Kahn 5, W. L. Smith Jr. 6, B. N. Holben 7, C.K. Rutledge.
Main Topic: Vertical Characterization of Aerosols Sub-topic: Tropospheric and Stratospheric Aerosol Erin Robinson, July5, 2010.
in-situ measurements in the framework of the ACTRIS-2 campaigns in:
Fourth TEMPO Science Team Meeting
LIDAR Ben Kravitz November 5, 2009.
Extinction measurements
Babes-Bolyai University, RO - General and scientific background -
Near UV aerosol products
Remote Sensing of Aerosols
Remote Sensing of Aerosols
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M. I. Mishchenko, I. V
Validation of airborne 1
Presentation transcript:

Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, FRANCE Aerosols spatial distribution (vertical / horizontal) using the multi-wavelength airborne sun-photometer PLASMA

The purpose of the development of airborne multi-wavelength sun photometer was to design an instrument that would directly measure the vertical profiles of AOD at different wavelengths in order to make these data for validation of ground-based and space-borne LIDAR measurements. LIDAR measures the backscattered laser light and the LIDAR equation cannot be solved without an additional constraint such as independent optical depth measurements easy to derive as long as the photometer is well calibrated. Thus, the first objective of PLASMA was to have a tool for the validation of LIDAR data. It was decided to use a wide spectral range to be able to derive information on aerosol size distribution from AOD measurements (King et al., 1978). Thus, the second objective was to get the size distributions of aerosol particles at different altitudes. Since last decades, similar airborne sunphotometers were developed (Matsumoto et al., 1987; Schmid et al., 2003; Asseng et al., 2004) but the PLASMA feature is its lightness so that it can be easily installed on a small airplane or an automobile. That was the third objective: the mobility of the instrument. As the instrument must be installed on the moving platform, the system requires accurate Sun tracking and connection to the GPS navigation system. Moreover, as the airplane speed is about 200 km/h, the frequency of the measurements at different channels must also be high enough for acquiring a whole data set within around one second. The installation on the body of the aircraft or on the roof of the automobile results in the necessity of complex computer control. A sophisticated software is required for the best automatisation of the measurements. Introduction

Airborne sun photometer PLASMA Photomètre Léger Aéroporté pour la Surveillance des Masses d’Air 3 15 channels 340 – 2250 nm

Sun photometer PLASMA 4 Debuggage session on Highway, Near Lille, 2009

Airborne sun photometer PLASMA 5

Langley Calibration (like AERONET master) 6 τ

Inter-calibration (like AERONET Field instrument) 7 only CIMEL wavelengths can be calibrated

PLASMA advantages wide spectral range: 340 – 2250 nm accurate Sun tracking weight: 3.5 kg kg for electronics frequency of measurements: 1 measurement in 100 m for a speed 200 km/h 8

Example of Ground-based measurements 9 Beijing PLASMA is the instrument #650 AERONET database 0.05 < ΔAOD < 0.01

10 PLASMA data inversion Airborne measurements: Dakar – M’Bour

11 PLASMA data inversion Airborne measurements: Dakar – M’Bour Spectral AOD + refractive index from AERONET at all altitudes Size Distribution change with altitude Torres et al., 2013, LOA

Automobile measurements: Tenerife experiment 14 13/01/2011

Automobile measurements: DRAGON campaign 15 PLASMA AOD Lidar profile Mortier et al., /07/2011

Automobile measurements: DRAGON campaign 16 PLASMA vs. AERONET DRAGON 20/07/2011

References : Sauvage B., Mise au point d’un photomètre multispectral embarqué sur avion (PLASMA) : participation et analyse de campagnes de mesures, Mémoire de stage de Master 2 de Béatrice Sauvage Parcours recherche ‘Optique, Physique Moléculaire et Atmosphérique’, Laboratoire d’Optique Atmosphérique, Lille 1, Juin 2008 Karol Y., D. Tanre, P. Goloub, C. Vervaerde, J. Y. Balois, L. Blarel, T. Podvin, A. Mortier, A. Chaikovsky, Airborne sunphotometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar, Atmos. Meas. Tech. Discuss., 5, 1–22, doi: /amtd / doi: /amtd / Karol Y., Determination of optical and microphysical properties of atmospheric aerosols from multi-wavelength airborne sun photometer, Thèse en co-tutelle Lille1-NBAS, Mortier A., P. Goloub, B. Holben, T. Podvin, L. Blarel, C. Verwaerde, Y. Karol, I. Slutsker, J- Y. Balois, D. Tanre, T. Berkoff, S Victori and R. Mathieu, Aerosol spatial distribution during DRAGON experiment as seen by a mobile ground-based Lidar-Sunphotometer system, International Laser and Radar Conference, Jun th 2012, Porto Heli, Greece, P Torres et al, Plasma in Charmex, ChArMEx Results & Perspectives Meeting, Paris (Ballon de Paris, Parc André Citroën) Sept Torres et al, ADRIMED/Plasma and Lampedusa, Meeting Lampedusa, Créteil (LISA), October Torres et al, First Retrievals Of Aerosol Properties Derived From Measurements Of The New Airborne Sunphotometer PLASMA During The Campaigns SHADOWS And ChArMEx. 7th International Workshop on Sand/Duststorms and Associated Dustfall, ESA/ESRIN, Frascati (Rome), Italy, 2-4 December Torres et al., first analysis of the aerosol properties derived from Measurements Of The New Airborne Sunphotometer PLASMA During The Campaigns SHADOWS And ChArMEx. Ateliers de Modélisation de l'Atmosphère 2014, Toulouse, France, January /51

18/51 The team: C. Vervaerde, L. Blarel, T. Podvin, J.-Y. Balois, A. Mortier, B. Torres, P. Goloub, D. Tanré, Y. Karol, R. Loisil, C. Delegove (with contributions from O. Dubovik, T. Lapionak, Y. Derimian)