Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 6: CPU Scheduling.

Slides:



Advertisements
Similar presentations
Chapter 5: CPU Scheduling
Advertisements

Scheduling Criteria CPU utilization – keep the CPU as busy as possible (from 0% to 100%) Throughput – # of processes that complete their execution per.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 17 Scheduling III.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2 nd Edition Chapter 6a: CPU Scheduling.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 6: CPU Scheduling.
 Basic Concepts  Scheduling Criteria  Scheduling Algorithms.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 16 Scheduling II.
Operating Systems Chapter 6
Chap 5 Process Scheduling. Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a.
Chapter 5 CPU Scheduling. CPU Scheduling Topics: Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Operating Systems CPU Scheduling. Agenda for Today What is Scheduler and its types Short-term scheduler Dispatcher Reasons for invoking scheduler Optimization.
Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007 Processes and Their Scheduling.
CPU Scheduling Algorithms
Chapter 3: CPU Scheduling
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
CS 311 – Lecture 23 Outline Kernel – Process subsystem Process scheduling Scheduling algorithms User mode and kernel mode Lecture 231CS Operating.
02/06/2008CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Scheduling in Batch Systems
Chapter 6: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 6: CPU Scheduling Basic.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
6/25/2015Page 1 Process Scheduling B.Ramamurthy. 6/25/2015Page 2 Introduction An important aspect of multiprogramming is scheduling. The resources that.
What we will cover…  CPU Scheduling  Basic Concepts  Scheduling Criteria  Scheduling Algorithms  Evaluations 1-1 Lecture 4.
Chapter 5-CPU Scheduling
7/12/2015Page 1 Process Scheduling B.Ramamurthy. 7/12/2015Page 2 Introduction An important aspect of multiprogramming is scheduling. The resources that.
02/11/2004CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Modified from Silberschatz, Galvin and Gagne ©2009 Lecture 8 Chapter 5: CPU Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Basic Concepts Maximum CPU utilization.
CPU-Scheduling Whenever the CPU becomes idle, the operating system must select one of the processes in the ready queue to be executed. The short term scheduler.
Chapter 6: CPU Scheduling
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
CS212: OPERATING SYSTEM Lecture 3: Process Scheduling 1.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Scheduling. Alternating Sequence of CPU And I/O Bursts.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times.
CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
Chapter 5 CPU Scheduling Bernard Chen Spring 2007.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 7: CPU Scheduling Chapter 5.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
Chapter 5: Process Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Basic Concepts Maximum CPU utilization can be obtained.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: Process Scheduling.
1 11/29/2015 Chapter 6: CPU Scheduling l Basic Concepts l Scheduling Criteria l Scheduling Algorithms l Multiple-Processor Scheduling l Real-Time Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 5: CPU Scheduling Basic.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 5 CPU Scheduling Slide 1 Chapter 5 CPU Scheduling.
Purpose of Operating System Part 2 Monil Adhikari.
1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
1 Uniprocessor Scheduling Chapter 3. 2 Alternating Sequence of CPU And I/O Bursts.
Chapter 4 CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
Lecture 4 CPU scheduling. Basic Concepts Single Process  one process at a time Maximum CPU utilization obtained with multiprogramming CPU idle :waiting.
CPU Scheduling G.Anuradha Reference : Galvin. CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time.
CPU scheduling.  Single Process  one process at a time  Maximum CPU utilization obtained with multiprogramming  CPU idle :waiting time is wasted 2.
1 Module 5: Scheduling CPU Scheduling Scheduling Algorithms Reading: Chapter
Basic Concepts Maximum CPU utilization obtained with multiprogramming
1 Lecture 5: CPU Scheduling Operating System Fall 2006.
CPU Scheduling Algorithms CSSE 332 Operating Systems Rose-Hulman Institute of Technology.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 Chapter 5: CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Scheduling (Priority Based)
CPU Scheduling.
Chapter 5: CPU Scheduling
Presentation transcript:

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Scheduling Criteria CPU utilization – keep the CPU as busy as possible Throughput – # of processes that complete their execution per time unit Turnaround time – amount of time to execute a particular process Waiting time – amount of time a process has been waiting in the ready queue Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

6.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Scheduling Algorithm Optimization Criteria Max CPU utilization Max throughput Min turnaround time Min waiting time Min response time

6.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition First- Come, First-Served (FCFS) Scheduling ProcessBurst Time P 1 24 P 2 3 P 3 3 Suppose that the processes arrive in the order: P 1, P 2, P 3 The Gantt Chart for the schedule is: Waiting time for P 1 = 0; P 2 = 24; P 3 = 27 Average waiting time: ( )/3 = 17

6.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition FCFS Scheduling (Cont.) Suppose that the processes arrive in the order: P 2, P 3, P 1 The Gantt chart for the schedule is: Waiting time for P 1 = 6; P 2 = 0 ; P 3 = 3 Average waiting time: ( )/3 = 3 Much better than previous case Convoy effect - short process behind long process Consider one CPU-bound and many I/O-bound processes

6.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Shortest-Job-First (SJF) Scheduling Associate with each process the length of its next CPU burst Use these lengths to schedule the process with the shortest time SJF is optimal – gives minimum average waiting time for a given set of processes The difficulty is knowing the length of the next CPU request Could ask the user

6.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Example of SJF ProcessArrival TimeBurst Time P P P P SJF scheduling chart Average waiting time = ( ) / 4 = 7

6.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Example of Shortest-remaining-time-first Now we add the concepts of varying arrival times and preemption to the analysis ProcessAarri Arrival TimeTBurst Time P 1 08 P 2 14 P 3 29 P 4 35 Preemptive SJF Gantt Chart Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

6.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Now we add the concepts of varying arrival times and preemption to the analysis ProcessAarri Arrival TimeTBurst Time P 1 09 P 2 13 P P 4 36 Preemptive SJF Gantt Chart ارسم الشكل Average waiting time = احسب متوسط زمن الانتظار

6.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Priority Scheduling A priority number (integer) is associated with each process The CPU is allocated to the process with the highest priority (smallest integer  highest priority) Preemptive Nonpreemptive SJF is priority scheduling where priority is the inverse of predicted next CPU burst time Problem  Starvation – low priority processes may never execute Solution  Aging – as time progresses increase the priority of the process

6.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Example of Priority Scheduling ProcessAarri Burst TimeTPriority P P 2 11 P 3 24 P 4 15 P 5 52 Priority scheduling Gantt Chart Average waiting time= ( )/5 = = 8.2 msec

6.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Round Robin (RR) Each process gets a small unit of CPU time (time quantum q), usually milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. Timer interrupts every quantum to schedule next process Performance q large  FIFO q small  q must be large with respect to context switch, otherwise overhead is too high

6.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Example of RR with Time Quantum = 4 ProcessBurst Time P 1 24 P 2 3 P 3 3 The Gantt chart is: Awt = ((10-4) ) = 3 = 17/3 = 5.66

6.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition تمرين Quantum = 3 ProcessBurst Time P 1 27 P 2 9 P 3 6 The Gantt chart is: ارسم الشكل واحسب متوسط زمن الانتظار