Energy Dependence of Soft Hadron Production Christoph Blume2nd International Workshop on the Critical Point and Onset of Deconfinement Bergen Mar. 30 -

Slides:



Advertisements
Similar presentations
Marcus Bleicher, ISMD 2005 Elliptic and Radial Flow in High Energetic Nuclear Collisions Marcus Bleicher (& Xianglei Zhu) Institut für Theoretische Physik.
Advertisements

Marcus Bleicher, Berkeley, Oct Elliptic Flow in High Energetic Nuclear Collisions Marcus Bleicher & Xianglei Zhu FIAS & Institut für Theoretische.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Diffusion and local deconfinement in relativistic systems Georg Wolschin Universität Heidelberg, Theor. Physics Georg Wolschin.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
Marcus Bleicher, Florence 2006 Longitudinal Flow and Onset of Deconfinement Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
Relativistic Heavy Ions Experiment II Global Observables.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
P.Seyboth: Indications for the onset of deconfinement in Pb+Pb collisions at the CERN SPS from NA49 (ISMD2004) 1 Indications for the Onset of Deconfinement.
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
Recent Results from the SPS Christoph BlumeExploring the Phase Diagram of Strongly Interacting Matter Workshop in Stony Brook Nov. 17, 2004.
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
Freeze-Out in a Hybrid Model Freeze-out Workshop, Goethe-Universität Frankfurt Hannah Petersen.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
K/π and p/π Fluctuations 25 th Winter Workshop on Nuclear Dynamics February 2, 2009 Gary Westfall Michigan State University For the STAR Collaboration.
 PID spectra in STAR  Baryon/anti-baryon ratios  Mixed hadron ratios  Statistical models  Chemical fits  Quark coalescence  Sudden hadronization.
Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics.
Helen Caines Yale University SQM – L.A.– March 2006 Using strange hadron yields as probes of dense matter. Outline Can we use thermal models to describe.
Marcus Bleicher, CCAST- Workshop 2004 Strangeness Dynamics and Transverse Pressure in HIC Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
QM’05 Budapest, HungaryHiroshi Masui (Univ. of Tsukuba) 1 Anisotropic Flow in  s NN = 200 GeV Cu+Cu and Au+Au collisions at RHIC - PHENIX Hiroshi Masui.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Matter System Size and Energy Dependence of Strangeness Production Sevil Salur Yale University for the STAR Collaboration.
Higher moments of net-charge multiplicity distributions at RHIC energies in STAR Nihar R. Sahoo, VECC, India (for the STAR collaboration) 1 Nihar R. Sahoo,
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
Do small systems equilibrate chemically? Ingrid Kraus TU Darmstadt.
Lecture 10 : Statistical thermal model Hadron multiplicities and their correlations and fluctuations (event-by-event) are observables which can provide.
Introduction The statistical model approach is established by analysis of particle ratios of the high energy heavy ion collisions in GSI-SIS to CERN-SPS.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Helen Caines Yale University Soft Physics at the LHC - Catania - Sept Questions for the LHC resulting from RHIC Strangeness Outline Chemistry Yields.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
System size dependence of freeze-out properties at RHIC Quark Matter 2006 Shanghai-China Nov System size dependence of freeze-out properties.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase.
HIRSCHEGG, January , 2005 Nu Xu //Talk/2005/01Hirschegg05// 1 / 24 Search for Partonic EoS in High-Energy Collisions Nu Xu Lawrence Berkeley National.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
Christoph Blume University of Heidelberg
9 th June 2008 Seminar at UC Riverside Probing the QCD Phase Diagram Aneta Iordanova.
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
Bulk properties of the system formed in Au+Au collisions at √s NN = 14.5 GeV using the STAR detector at RHIC Vipul Bairathi (for the STAR Collaboration)
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Christina Markert Hot Quarks, Sardinia, Mai Christina Markert Kent State University Motivation Resonance in hadronic phase Time R AA and R dAu Elliptic.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
QM08, Jaipur, 9 th February, 2008 Raghunath Sahoo Saturation of E T /N ch and Freeze-out Criteria in Heavy Ion Collisions Raghunath Sahoo Institute of.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
24 June 2007 Strangeness in Quark Matter 2007 STAR 2S0Q0M72S0Q0M7 Strangeness and bulk freeze- out properties at RHIC Aneta Iordanova.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
1 M. Gazdzicki Frankfurt, Kielce Observation of the onset of deconfinement and Search for the critical point Past and future of the ion physics at the.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
Hadron Spectra and Yields Experimental Overview Julia Velkovska INT/RHIC Winter Workshop, Dec 13-15, 2002.
Soft physics in PbPb at the LHC Hadron Collider Physics 2011 P. Kuijer ALICECMSATLAS Necessarily incomplete.
1 Strange Resonance Production in p+p and Au+Au Collisions at RHIC energies. Christina Markert, Yale University for the STAR Collaboration QM2004,
Duke University 野中 千穂 Hadron production in heavy ion collision: Fragmentation and recombination in Collaboration with R. J. Fries (Duke), B. Muller (Duke),
Review of Structures in the Energy Dependence of Hadronic Observables Christoph BlumeInt. Workshop on Critical Point and Onset of Deconfinement Florence,
ENERGY AND SYSTEM SIZE DEPENDENCE OF CHEMICAL FREEZE-OUT
Heavy Ion Physics at NICA Simulations G. Musulmanbekov, V
Identified Charged Hadron Production
Presentation transcript:

Energy Dependence of Soft Hadron Production Christoph Blume2nd International Workshop on the Critical Point and Onset of Deconfinement Bergen Mar Apr. 3, 2005

Christoph Blume Bergen Workshop, Mar.30-Apr The QCD Phase Diagram The Simplified Version Critical point Phase boundary separating QGP and hadronic world Cross over line from lattice QCD Lattice calculations: Fodor and Katz Bielefeld-Swansea group  B = 0:cross over transition at T  170 MeV 1st order transition T = 0:1st order transition

Christoph Blume Bergen Workshop, Mar.30-Apr The QCD Phase Diagram Heavy Ion Reactions High energies (RHIC/LHC)  B low QGP phase (most likely) reached Lower energies (AGS)  B high System remains in hadronic phase Intermediate energies Vary  B by studying nuclear collisions at different  s Possible to locate where the phase boundary is reached?

Christoph Blume Bergen Workshop, Mar.30-Apr  SPS energy regime allows to explore an essential part of the phase diagram –Transition to QGP is likely to happen at SPS energies –E beam = AGeV (  s NN = GeV)  Use hadronic observables to pin down phase transition  Systematic studies:  Energy dependence of central A+A reactions The QCD Phase Diagram Experimental Observables AGS SPS RHIC

Christoph Blume Bergen Workshop, Mar.30-Apr Outline Soft Hadron Production  Soft physics regime –p t < 2 GeV/c –Bulk properties of particle production  Rapidity Spectra –Longitudinal expansion  Particle Yields –Strangeness –Chemical freeze-out conditions  Transverse Mass Spectra –Transverse expansion (  EOS?) –Thermal freeze-out conditions  Fluctuations –K/  (p/  ) fluctuations

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Central Pb+Pb 7% (20-80) 5/10% (158) NA49 Change of shape only for  Others: ~ Gaussians

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Pions Single Gaussians! Comparison AGS, SPS, and RHIC Central Pb+Pb/Au+Au

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Energy Dependence of Widths Pion widths are close to Landau prediction, but not perfectly But: Perfect agreement to linear dependence on y beam

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Energy Dependence of Widths Linear dependence on y beam Clear hierarchy for Gaussian-like particles at SPS (p, ,  excluded):  > K + > K -,  >  Seems to break down at AGS

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Mass Dependence of Widths Approx. linear dependence on particle mass Similar slope at all SPS energies  Thermal component of longitudinal flow  negatives

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Dependence on Strangeness Content Central Pb+Pb, 158 AGeV NA49 Net protons: 3 valence quarks (uud ) Omegas: 3 produced quarks (sss ) Net  s: 1 valence (d ) + 2 produced quarks (ss ) Net  s: 2 valence (ud ) + 1 produced quark (s ) Net protons difficult to reconcile with pure Landau !

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields AGSNA49BRAHMS Central Au+Au, Pb+Pb 4  multiplicities only!

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields Statistical Hadron Gas Model Becattini et al., Phys. Ref. C69 (2004) Assumption of chemical equilibrium at the freeze-out point  Particle production can be described with a few parameters: V, T,  B,  s

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields Phase Diagram (II): Chemical Freeze-Out Chemical freeze-out points approach phase boundary at top SPS energies Does the system cross the phase boundary ? And if yes, where ? Freeze-out curve at  E  /N = 1GeV Cleymans and Redlich PRL 81 (1998) 5284

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields Energy Dependence  K +  /  +   K -  /  -   /   /   -  /   - +  +  / 

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields Energy Dependence UrQMD HSD E.L. Bratkovskaya et al., PRC 69 (2004),  K +  /  +   K -  /  -   /   /   -  /   - +  +  / 

Christoph Blume Bergen Workshop, Mar.30-Apr Statistical hadron gas model:  s = 1 P. Braun-Munzinger, J. Cleymans, H. Oeschler, and K. Redlich Nucl. Phys. A697 (2002) 902 Particle Yields Energy Dependence  K +  /  +   K -  /  -   /   /   -  /   - +  +  / 

Christoph Blume Bergen Workshop, Mar.30-Apr Statistical hadron gas model:  s free F. Becattini, M. Gazdzicki, A. Keränen, J. Manninen, R. Stock PRC 69 (2004), Particle Yields Energy Dependence  K +  /  +   K -  /  -   /   /   -  /   - +  +  / 

Christoph Blume Bergen Workshop, Mar.30-Apr s-quark carriers: K -, K 0 (1)  (incl.  0 )  0,-,  - (2)  ± (3) s-quark carriers: K +, K 0 (1)  (incl.  0 )  0,+,  + (2)  ± (3) Energy dependence of strangeness production changes at  30 AGeV Particle Yields Comparison s- and s-Carriers (1)  K 0    K + ,  K 0    K -  by isospin symmetry (2) Taken from hadron gas fit by F. Becattini et al., if not measured. (3) Empirical factor (    +  ) /  = 1.6 assumed.

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields (Anti-)Strangeness to Pion Ratio Maximum in strangeness/pion ratio Same for s and s quarks Difficult to model Solid line: Statistical hadron gas model with  s = 1 K. Redlich, priv. comm. Predicted as signal for the onset of deconfinement M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. B30 (1999), 2705

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra 20 AGeV30 AGeV Central (7%) Pb+Pb NA49 Schnedermann, Sollfrank, and Heinz, Phys. Rev. C46 Radial flow fit (“Blast Wave”) Here:  t independent of r

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Data: E895: nucl-ex/ NA49: Phys. Rev. C66 (2002) , nucl-ex/ PHENIX: Phys. Rev. C69 (2004) , nucl-ex/ -- K - p Model: U. Wiedemann and U. Heinz, Phys. Rev. C56 (1997) 3265 B. Tomasik, nucl-th/

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Energy Dependence of Fit Parameter Fit to  -, K - and p Box-shaped source profile and linear velocity profile Fit range 0.1 < m t -m 0 < 0.8 GeV Energy dependence of T f seems to change around 30 AGeV Thermal and chemical freeze-out different? Single freeze-out model? Continous increase of  T  T ch

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Phase Diagram (III): Thermal Freeze-Out Thermal freeze-out seems to be at lower temperature than chemical freeze-out from top AGS energies on Strongly model dependent ! Single freeze-out models ?

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Inverse Slope Parameters of Kaons Step in energy dependence p+p compilation from: M. Kliemant, B. Lungwitz, and M. Gazdzicki, PRC 69 (2004) Seems to be absent in p+p How about other particle types?

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Energy Dependence of  m t  -m 0 Energy dependence of transverse activity seems to change around 30 AGeV. General feature for pion, kaons and protons  negatively charged

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Inverse Slope Parameters of Kaons Feature cannot be described by transport models

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Inverse Slope Parameters of Kaons Hydro calculation Y. Hama et al. Braz. J. Phys. 34 (2004), 322, hep-ph/ Assuming 1st order phase transition Initial conditions from NeXus  Change of EOS seen?

Christoph Blume Bergen Workshop, Mar.30-Apr Elliptic Flow Energy Dependence Mid-rapidity data, p t integrated Initial spatial anisotropy  different pressure gradients  momentum anisotropy v 2

Christoph Blume Bergen Workshop, Mar.30-Apr Elliptic Flow Energy Dependence + Transport Model 30 AGeV Data show saturation of scaled v 2 M. Bleicher, SQM04 Points to an initial QGP pressure from 30 AGeV on !

Christoph Blume Bergen Workshop, Mar.30-Apr Fluctuations The Critical Point Endpoint of the first order phase transition line  crossover on left side Position quite uncertain But recent lattice calculations by Fodor and Katz predicts position at  B = 360 MeV using physical quark masses It might be accessible in the SPS energy range Observables: Event-by-event fluctuations

Christoph Blume Bergen Workshop, Mar.30-Apr GeV preliminary Fluctuations Particle Ratios preliminary 160 GeV Compare to mixed event reference  Resolution  Finite number statistics  Extraction of dynamical fluctuations  2 dynamic =  2 data -  2 mix  = RMS/Mean * 100 [%] Event-by-event fluctuations of e.g. K/  NA49

Christoph Blume Bergen Workshop, Mar.30-Apr Fluctuations Energy Dependence of K/  Fluctuations preliminary Clear energy dependence of K/  fluctuations observed  Decrease with energy Fluctuation from UrQMD independent of energy Non-zero value due to energy and strangeness conservation Data wider than mixed events reference Promising, but no clear evidence for critical point yet

Christoph Blume Bergen Workshop, Mar.30-Apr Fluctuations Energy Dependence of p/  Fluctuations Clear energy dependence of p/  fluctuations observed  Increase with energy preliminary Similar trend seen in UrQMD  Resonance contribution changes with beam energy Data narrower than reference  Can be caused by resonances

Christoph Blume Bergen Workshop, Mar.30-Apr Summary  Systematic study of energy dependence (still ongoing) –Rapidity and transverse mass spectra –Particle Yields –Fluctuations  A variety of interesting features have been revealed: –Mass dependence of rapidity widths, seemingly independent of beam energy at SPS –Clear change of the energy dependence of m t -spectra at 30 AGeV  Evidence for a change of EOS? –Maximum in the strangeness to pion ratio at 30 AGeV  Evidence for deconfinement?  Outlook: Search for critical point –No clear evidence yet (K/  fluctuations)  dedicated search with future projects (SPS, FAIR)

Christoph Blume Bergen Workshop, Mar.30-Apr The End

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields Energy Dependence Central Pb+Pb/Au+Au Mid-rapidity ratios

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Blast Wave Model Basic blast wave model:  Common freeze-out of all particle types  Boost invariant longitudinal expansion  Transverse expansion is modelled by a velocity profile  “Standard” version: Schnedermann, Sollfrank, and Heinz, Phys. Rev. C46 Extended version:  Resonance contribution included  Baryonic resonances introduce dependence on  B  Chemical freeze-out: T ch and  B taken from freeze-out curve  Thermal freeze-out: System cools down, therefore assume:  Conservation of entropy  Conservation of effective particle numbers U. Wiedemann and U. Heinz, Phys. Rev. C56 (1997) 3265 B. Tomasik, nucl-th/

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Distributions Landau Scenario in p+p Prediction: dN/dy is Gaussian of a width  = 2L given by: (simplified model) L. D. Landau, Izv. Akad. Nauk. SSSR 17 (1953) 52 P. Carruthers and M. Duong-Van, Phys. Ref. D8 (1973) 859 Pion production ~ Entropy Isentropic expansion Description of the pion gas as a 3D relativistic fluid

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Kaons Single Gaussian works reasonably well for K - Does not really work for K + at lower SPS energies  Use RMS

Christoph Blume Bergen Workshop, Mar.30-Apr Particle Yields Energy Dependence  K +  /  +   K -  /  -   /   /   -  /   - +  +  / 

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra The Omega Evidence for early freeze-out of the Omega from blast wave fits? Blast Wave Model Velocity Profile T f (MeV)  t  Aconstant1250.5from fits shown before (*) M.I. Gorenstein, K. A. Bugaev and M. Gazdzicki, PRL. 88 (2002), Fit to K, p, ,  0.590linearB1 Fit to J/  and  ’ (*)0.2170linearB2 NA49 publication: C. Alt et al., nucl-ex/

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Rapidty Shift  y yPyP yTyT y0y0 yy yy y0y0 yPyP yTyT yy yy y’ P y’ T How does the rapidity shift  y evolve with beam energy? Determines the energy available in the produced fireball Baryon number distributions at lower energies:higher energies:

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Energy Dependence of  y  BRAHMS, I.G. Bearden et al. PRL 93 (2004), Seems to increase linearly at AGS and SPS:  y  /y beam  0.27 Rapidity shift: But: Weaker increase to RHIC energies! Energy loss  E : RHIC (  s NN = 200 GeV):  E/Nucleon = 73 ± 6 GeV

Christoph Blume Bergen Workshop, Mar.30-Apr Rapidity Spectra Energy Dependence of Net-Protons BRAHMS, I.G. Bearden et al. PRL 93 (2004), The shape of the distributions changes dramatically with energy AGS: baryonic system  RHIC: mesonic system  Large implications in the hadronic sector

Christoph Blume Bergen Workshop, Mar.30-Apr Transverse Mass Spectra Inverse Slope Parameters of Kaons Model comparisons M. Bleicher, SQM04 Additional resonances? UrQMD 2.1 Initial QGP pressure?