Methane Distribution in Titan’s Atmosphere Spica + Shaula Occultations. Candidate Observations Symmetrical Methane Distribution Flatfield Issues Asymmetrical.

Slides:



Advertisements
Similar presentations
Characterization of ATMS Bias Using GPSRO Observations Lin Lin 1,2, Fuzhong Weng 2 and Xiaolei Zou 3 1 Earth Resources Technology, Inc.
Advertisements

U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Direct measurements of chorus wave effects on electrons in the.
Measuring the height of Lunar Mountains using data from the Liverpool Telescope.
High Altitude Equatorial Clouds as Seen with the OSIRIS InfraRed Imager A.E. Bourassa, D.A. Degenstein, N.D. Lloyd and E.J. Llewellyn Institute of Space.
Evaluation of Diurnal-Seasonal Variation of PBL Depth in Maryland Material for discussion October 13, 2010 Dr. Konstantin Vinnikov, Acting State Climatologist.
Observations of Open and Closed Magnetic Field Lines at Mars: Implications for the Upper Atmosphere D.A. Brain, D.L. Mitchell, R. Lillis, R. Lin UC Berkeley.
A Warm South Pole? Yes, on Neptune! A&A 473, L5 – L8 (2007) "Evidence for Methane Escape and Strong Seasonal and Dynamical Perturbations of Neptune's Atmospheric.
Dorin Comaniciu Visvanathan Ramesh (Imaging & Visualization Dept., Siemens Corp. Res. Inc.) Peter Meer (Rutgers University) Real-Time Tracking of Non-Rigid.
MGS Accelerometer-derived profiles of Upper Atmospheric Pressures and Temperatures: Similarities, Differences, and Winds Withers, Bougher, and Keating.
The Global Digital Elevation Model (GTOPO30) of Great Basin Location: latitude 38  15’ to 42  N, longitude 118  30’ to 115  30’ W Grid size: 925 m.
Rachel Klima (on behalf of the MASCS team) JHU/APL MASCS/VIRS Data Users’ Workshop LPSC 2014, The Woodlands, TX March 17,2014 MASCS Instrument & VIRS Calibration.
1 Robert Schaefer and Joe Comberiate for the SSUSI Team Robert SchaeferJoe Comberiate (240) (240)
Spatially Complete Global Surface Albedos Derived from MODIS Data
June, 2003EUMETSAT GRAS SAF 2nd User Workshop. 2 The EPS/METOP Satellite.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Lecture 5 The Climate System and the Biosphere. One significant way the ocean can influence climate is through formation of sea ice. Sea ice is much more.
November 13, 2014Computer Vision Lecture 17: Object Recognition I 1 Today we will move on to… Object Recognition.
Stratospheric temperature trends from combined SSU, SABER and MLS measurements And comparisons to WACCM Bill Randel, Anne Smith and Cheng-Zhi Zou NCAR.
SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA COS Monthly Status Review 18 January 2007.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
The Road to RL05 Srinivas Bettadpur for the UTCSR GRACE Team.
Spatial Statistics in Ecology: Point Pattern Analysis Lecture Two.
SMOS-BEC – Barcelona (Spain) LO calibration frequency impact Part II C. Gabarró, J. Martínez, V. González, A. Turiel & BEC team SMOS Barcelona Expert Centre.
Timing of high latitude peatland initiation since the Last Glacial Maximum Pirita Oksanen, University of Bristol, School of Geographical Sciences Contact.
Retrieval of Methane Distributions from IASI
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
First global view of the Extratropical Tropopause Transition Layer (ExTL) from the ACE-FTS Michaela I. Hegglin, University of Toronto, CA Chris Boone,
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
Rutherford Appleton Laboratory CAMELOT Observation Techniques and Mission Concepts for Atmospheric Chemistry Task 4: Assessment of Cloud Contamination.
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
SHOEMAKER CRATER – GOING WHERE WE CAN “SEE” Carlton Allen NASA JSC.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Ionospheric characteristics above martian crustal magnetic anomalies Paul Withers, M Mendillo, H Rishbeth, D Hinson, and J Arkani-Hamed Abstract #33.02.
Space-based studies of low-latitude ionospheric forcing originating in the lower atmosphere Thomas J. Immel, Scott L. England Space Sciences Laboratory,
06/28/10UVIS TEAM MEETING OPERATIONS UPDATE UVIS TEAM MEETING OPERATIONS UPDATE 1.
Rev 131 Enceladus’ Plume Solar Occultation LW Esposito and UVIS Team 14 June 2010.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan and Saturn reports June, TOST agenda.
Rev 51 Enceladus Zeta Orionis Occultation Analysis Status 9 January 2008.
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph Wayne Pryor Robert West Ian Stewart Don Shemansky Joseph Ajello Larry Esposito Joshua.
Icy Moon Occultations: the Search for Volatiles
VIRTIS flyby of Steins M-IR Spectral analysis
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
The ionosphere is much more structured and variable than ever predicted. Solar Driven Model Since 2000, we have seen more, very clear evidence that the.
UVIS Saturn Atmosphere Occultation Prospectus
XM Status and Plans, XXM Activities Icy Satellite Science
SOIR operations and archiving
HDAC analysis: Hydrogen in Titan‘s exosphere
VENUS THERMOSPHERIC DENSITIES AS REVEALED BY VENUS EXPRESS TORQUE MEASUREMENTS   C.F. Wilson, Oxford University, Oxford, UK M. Persson,
Titan tholin properties from occultation and emission observations
UVIS Performance Status
“SMILES” aboard the ISS-JEM “KIBO”
Iapetus as measured by Cassini UVIS
XM Status, Priorities and Plans Icy Satellites
Titan H2O Clouds + ISS/UVIS
Object Recognition Today we will move on to… April 12, 2018
UVIS Calibration Update
UVIS Occultation Geometry Summary
Cassini UVIS solar occultation
Igor Appel Alexander Kokhanovsky
Exploring the ionosphere of Mars
UVIS Calibration Update
UVIS Saturn EUVFUV Data Analysis
Dione’s O2 Exosphere C. J. Hansen January 2013.
Titan Flyby Altitude – Tour Updates Upcoming Observations in 2006
UVIS Calibration Update
Kristopher Larsen July 26, 2005
UVIS Titan T0, TA Analysis
UVIS Goals for CSM R. West.
Presentation transcript:

Methane Distribution in Titan’s Atmosphere Spica + Shaula Occultations. Candidate Observations Symmetrical Methane Distribution Flatfield Issues Asymmetrical Distribution Why a difference? Changes over extent of mission?

T-B: Lamba-Scorpio Occultation 1/e depth at 988 ± 20km With Shaula Lyman-alpha between km

T-B: Alpha-Virgo Occultation 1/e depth = 986 km ± 10 With km background 1/e depth = 1004 km ± 15 With km background

Candidate Titan Observation Criteria for Lyman-Alpha Occultations Sufficient off-target pixels to derive local unattenuated ISM Lyman-alpha counts. Coverage of all latitude ranges during a single observation. Sufficient pixels within each latitude bin to improve statistics. Variety of illumination and observational geometries.

Titan UVIS Observation List T0:TEMPMAP203_CIRS TEMPMAP001_CIRS FIRNADCMP001_CIRS TA:EUVFUV001_VIMS EUVFUV002_PRIME TB:EUVFUV002_PRIME EUVFUV001_PRIME TWOSTOCCS001_PRIME T3: EUVFUV001_PRIME MIDIRTMAP002_CIRS MONITORNA001_ISS MIRLIMBINT002_CIRS COMBINED001_ISS EUVFUV001_PRIME NIGHTWAC003_ISS FIRNADCMP002_CIRS MIDIRTMAP003_CIRS T4:FIRNADCMP002_CIRS EUVFUV001_PRIME FIRNADCMP003_CIRS T5:FIRNADCMP002_CIRS EUVFUV001_PRIME HIGHRESNA001_ISS T6: FIRNADCMP002_CIRS MIRLMBMAP002_CIRS FIRNADCMP002_CIRS FIRNADCMP004_CIRS MIDIRTMAP007_CIRR T8:GLOBMAP001_ISS MEDRES001_VIMS HIGHRESNA001_ISS MIRLMBMAP001_CIRS FIRNADCMP003_CIRS MIDIRTMAP005_CIRS T9:FIRNADCMP003_CIRS MEDRES001_VIMS GLOBMAP001_ISS EUVFUV001_PRIME T10:NIGHTNAC001_ISS EUVFUV001_PRIME GLBMAPNLP001_ISS MIRLMBINT002_CIRS FIRNADCMP002_CIRS MIDIRTMAP010_CIRS T11:MEDRES001_VIMS MONITORNA001_ISS MONITORNA002_ISS EUVFUV002_PRIME FIRNADCMP002_CIRS T12:FIRNADCMP003_CIRS GLOBMAPNA001_ISS REGMAP004_VIMS AURORA002_VIMS FIRNADCMP008_CIRS T13:EUVFUV002_PRIME T14:EUVFUV001_PRIME EUVFUV001_ENGR EUVFUV002_PRIME T15:EUVFUV002_PRIME T17:FIRNADCMP003_CIRS EUVFUV001_PRIME FIRLMBINT002_CIRS FIRLMBAER002_CIRS HIGHRESNA001_ISS REGMAPNA001_ISS GLOBMAPNA001_ISS MONITORNA001_ISS T18:EUVFUV001_PRIME T19:MIRLMBINT002_CIRS MIRLMBINT003_CIRS COMPMAP007_CIRS T20:CLOUDMAP201_VIRS COMPMAP001_VIMS T21:EUVFUV001_PRIME COMPMAP023_CIRS T22:FIRNADCMP003_CIRS FIRNADMAP002_CIRS REGMAPNA001_ISS FIRNADMAP003_ISS FIRNADCMP002_CIRS

Titan UVIS Observation List: Methane Abundance Mapping T0:TEMPMAP203_CIRS TEMPMAP001_CIRS FIRNADCMP001_CIRS TA:EUVFUV001_VIMS EUVFUV002_PRIME TB:EUVFUV002_PRIME EUVFUV001_PRIME TWOSTOCCS001_PRIME T3: EUVFUV001_PRIME MIDIRTMAP002_CIRS MONITORNA001_ISS MIRLIMBINT002_CIRS COMBINED001_ISS EUVFUV001_PRIME NIGHTWAC003_ISS FIRNADCMP002_CIRS MIDIRTMAP003_CIRS T4:FIRNADCMP002_CIRS EUVFUV001_PRIME FIRNADCMP003_CIRS T5:FIRNADCMP002_CIRS EUVFUV001_PRIME HIGHRESNA001_ISS T6: FIRNADCMP002_CIRS MIRLMBMAP002_CIRS FIRNADCMP002_CIRS FIRNADCMP004_CIRS MIDIRTMAP007_CIRS T8:GLOBMAP001_ISS MEDRES001_VIMS HIGHRESNA001_ISS MIRLMBMAP001_CIRS FIRNADCMP003_CIRS MIDIRTMAP005_CIRS T9:FIRNADCMP003_CIRS MEDRES001_VIMS GLOBMAP001_ISS EUVFUV001_PRIME T10:NIGHTNAC001_ISS EUVFUV001_PRIME GLBMAPNLP001_ISS MIRLMBINT002_CIRS FIRNADCMP002_CIRS MIDIRTMAP010_CIRS T11:MEDRES001_VIMS MONITORNA001_ISS MONITORNA002_ISS EUVFUV002_PRIME FIRNADCMP002_CIRS T12:FIRNADCMP003_CIRS GLOBMAPNA001_ISS REGMAP004_VIMS AURORA002_VIMS FIRNADCMP008_CIRS T13:EUVFUV002_PRIME T14:EUVFUV001_PRIME EUVFUV001_ENGR EUVFUV002_PRIME T15:EUVFUV002_PRIME T17:FIRNADCMP003_CIRS EUVFUV001_PRIME FIRLMBINT002_CIRS FIRLMBAER002_CIRS HIGHRESNA001_ISS REGMAPNA001_ISS GLOBMAPNA001_ISS MONITORNA001_ISS T18:EUVFUV001_PRIME T19:MIRLMBINT002_CIRS MIRLMBINT003_CIRS COMPMAP007_CIRS T20:CLOUDMAP201_VIRS COMPMAP001_VIMS T21:EUVFUV001_PRIME COMPMAP023_CIRS T22:FIRNADCMP003_CIRS FIRNADMAP002_CIRS REGMAPNA001_ISS FIRNADMAP003_ISS FIRNADCMP002_CIRS

End of Observation Beginning of Observation T-8: MIDIRTMAP005-CIRS

Background Lyman-alpha pixels are restricted to a ±1.5° region of space. Hence, the variability in Lyman-alpha during a single observation should be negligible. However, background Lyman-alpha count totals are highly variable. Mean of background counts = 54±7

T-8: MIDIRTMAP005-CIRS Incomplete Flatfielding affects the background Lyman-alpha levels. However, smoothing across many pixels effectively compensates. More tests remain to be done with new flatfield techniques and correction factors

T-8: MIDIRTMAP005-CIRS

Approximate error bars (+- 30 km)

T-9: EUVFUV001_PRIME

T-18: EUVFUV001_PRIME Beginning of Observation End of Observation

T-18: EUVFUV001_PRIME

T13: EUVFUV002_PRIME Typical ‘Asymmetrical’ Observation Observation geometry nearly identical to T-9: EUVFUV001_PRIME observation which showed symmetrical methane distribution.

T13: EUVFUV002_PRIME

‘Asymmetrical’ Observations Equatorial bins are generally symmetrical Additional features produce asymmetrical patterns Lyman-alpha ‘hump’ near exobase altitude unexplained ‘spikes’ seen at highest altitudes Overcorrection of RTG background

No Asymmetry N/S Methane ‘Asymmetry’ T8: MIDIRTMAP005_CIRS T9: EUVFUV001_PRIME T18:EUVFUV001_PRIME T3: EUVFUV001_PRIME MONITORNA001_ISS MIDIRTMAP002_CIRS MIDIRTMAP003_CIRS T6:MIDIRTMAP007_CIRS T10: EUVFUV001_PRIME MIDIRTMAP010_CIRS T13:EUVFUV002_PRIME T14:EUVFUV001_PRIME T17:EUVFUV001_PRIME MONITORNA001_ISS

No evidence for statistically significant latitudinal asymmetry in the distribution of methane in Titan’s atmosphere. Based on all Titan FUV observations to date. Observed ‘Asymmetry’ in Lyman-alpha absorption profiles due to additional factors. Incomplete flatfield correction. Unaccounted for Lyman-alpha emission near Titan exobase. Spurious or contaminated data. Possible changes in the global structure of Methane Distribution from February, 2005 – September, 2006 Need more global observations to confirm. Methane Distribution in Titan’s atmosphere.

Symmetric vs. Asymmetric Observations

T-9: EUVFUV001_PRIME

T-18: EUVFUV001_PRIME