Challenges in Long Term Computing Models 1 Challenges in Long Term Computing Models ROOT Solutions First Workshop on Data Preservation And Long Term Analysis.

Slides:



Advertisements
Similar presentations
Blueprint RTAGs1 Coherent Software Framework a Proposal LCG meeting CERN- 11 June Ren é Brun ftp://root.cern.ch/root/blueprint.ppt.
Advertisements

Coherent Software Framework a Proposal
23/04/2008VLVnT08, Toulon, FR, April 2008, M. Stavrianakou, NESTOR-NOA 1 First thoughts for KM3Net on-shore data storage and distribution Facilities VLV.
O. Stézowski IPN Lyon AGATA Week September 2003 Legnaro Data Analysis – Team #3 ROOT as a framework for AGATA.
David Adams ATLAS DIAL Distributed Interactive Analysis of Large datasets David Adams BNL March 25, 2003 CHEP 2003 Data Analysis Environment and Visualization.
The new The new MONARC Simulation Framework Iosif Legrand  California Institute of Technology.
Trigger and online software Simon George & Reiner Hauser T/DAQ Phase 1 IDR.
Large Data Bases in High Energy Physics Frontiers in Diagnostic Technologies Frascati November 26 Frascati November 26 Rene Brun/CERN.
PROOF: the Parallel ROOT Facility Scheduling and Load-balancing ACAT 2007 Jan Iwaszkiewicz ¹ ² Gerardo Ganis ¹ Fons Rademakers ¹ ¹ CERN PH/SFT ² University.
Perspective on Future Data AnalysisL1 Computing in High Energy Physics 2003 La Jolla 24 March Ren é Brun CERN Perspective on Future Data Analysis in HENP.
Filesytems and file access Wahid Bhimji University of Edinburgh, Sam Skipsey, Chris Walker …. Apr-101Wahid Bhimji – Files access.
ROOT An object oriented HEP analysis framework.. Computing in Physics Physics = experimental science =>Experiments (e.g. at CERN) Planning phase Physics.
Introduction to Hall-D Software February 27, 2009 David Lawrence - JLab.
Test Of Distributed Data Quality Monitoring Of CMS Tracker Dataset H->ZZ->2e2mu with PileUp - 10,000 events ( ~ 50,000 hits for events) The monitoring.
A Metadata Based Approach For Supporting Subsetting Queries Over Parallel HDF5 Datasets Vignesh Santhanagopalan Graduate Student Department Of CSE.
ROOT impossible wishes1 Alice workshop Sibiu 21 August 2008 Ren é Brun CERN/PH/SFT ROOT Impossible wishes ?
ROOT I/O recent improvements Bottlenecks and Solutions Rene Brun December
Introduction to ROOT May May Rene Brun/CERN.
QCDGrid Progress James Perry, Andrew Jackson, Stephen Booth, Lorna Smith EPCC, The University Of Edinburgh.
ATLAS Peter van Gemmeren (ANL) for many. xAOD  Replaces AOD and DPD –Single, EDM – no T/P conversion when writing, but versioning Transient EDM is typedef.
ATLAS and GridPP GridPP Collaboration Meeting, Edinburgh, 5 th November 2001 RWL Jones, Lancaster University.
Introduction to dCache Zhenping (Jane) Liu ATLAS Computing Facility, Physics Department Brookhaven National Lab 09/12 – 09/13, 2005 USATLAS Tier-1 & Tier-2.
1 Marek BiskupACAT2005PROO F Parallel Interactive and Batch HEP-Data Analysis with PROOF Maarten Ballintijn*, Marek Biskup**, Rene Brun**, Philippe Canal***,
5 May 98 1 Jürgen Knobloch Computing Planning for ATLAS ATLAS Software Week 5 May 1998 Jürgen Knobloch Slides also on:
ROOT Application Area Internal Review September 2006.
ROOT for Data Analysis1 Intel discussion meeting CERN 5 Oct 2003 Ren é Brun CERN Distributed Data Analysis.
Acat OctoberRene Brun1 Future of Analysis Environments Personal views Rene Brun CERN.
ROOT and Federated Data Stores What Features We Would Like Fons Rademakers CERN CC-IN2P3, Nov, 2011, Lyon, France.
ATLAS Data Challenges US ATLAS Physics & Computing ANL October 30th 2001 Gilbert Poulard CERN EP-ATC.
Rene Brun Booting ROOT with BOOT René Brun, Fons Rademakers CERN Geneva, Switzerland.
ROOT Future1 Some views on the ROOT future ROOT Workshop 2001 June 13 FNAL Ren é Brun CERN.
SEAL Core Libraries and Services CLHEP Workshop 28 January 2003 P. Mato / CERN Shared Environment for Applications at LHC.
Design, Development and Evolution of the ROOT system Rene Brun February ACAT2010 Jaipur René Brun, ACAT2010, Jaipur1ROOT: design,development, evolution.
H.G.Essel: Go4 - J. Adamczewski, M. Al-Turany, D. Bertini, H.G.Essel, S.Linev CHEP 2003 GSI Online Offline Object Oriented Go4.
1 LHCC RRB SG 16 Sep P. Vande Vyvre CERN-PH On-line Computing M&O LHCC RRB SG 16 Sep 2004 P. Vande Vyvre CERN/PH for 4 LHC DAQ project leaders.
LCG seminar1 The LCG Software and the ROOT Framework LCG seminar CERN- 7 November Ren é Brun ftp://root.cern.ch/root/lcgtalk.ppt.
PROOF and ALICE Analysis Facilities Arsen Hayrapetyan Yerevan Physics Institute, CERN.
A.Abhari CPS1251 Topic 1: Introduction to Computers Computer Hardware Computer components Connecting Computers Computer Software Operating System (OS)
Computing R&D and Milestones LHCb Plenary June 18th, 1998 These slides are on WWW at:
Claudio Grandi INFN-Bologna CHEP 2000Abstract B 029 Object Oriented simulation of the Level 1 Trigger system of a CMS muon chamber Claudio Grandi INFN-Bologna.
9/28/2005Philippe Canal, ROOT Workshop TTree / SQL Philippe Canal (FNAL) 2005 Root Workshop.
Testing and integrating the WLCG/EGEE middleware in the LHC computing Simone Campana, Alessandro Di Girolamo, Elisa Lanciotti, Nicolò Magini, Patricia.
March, PROOF - Parallel ROOT Facility Maarten Ballintijn Bring the KB to the PB not the PB to the KB.
Super Scaling PROOF to very large clusters Maarten Ballintijn, Kris Gulbrandsen, Gunther Roland / MIT Rene Brun, Fons Rademakers / CERN Philippe Canal.
Doug Benjamin Duke University. 2 ESD/AOD, D 1 PD, D 2 PD - POOL based D 3 PD - flat ntuple Contents defined by physics group(s) - made in official production.
Postgraduate Computing Lectures PAW 1 PAW: Physicist Analysis Workstation What is PAW? –A tool to display and manipulate data. Learning PAW –See ref. in.
Overview, Major Developments, Directions1 ROOT Project Status Major developments Directions NSS05 Conference 25 October Ren é Brun CERN Based on my presentation.
Trees: New Developments1 Trees: New Developments Folders and Tasks ROOT Workshop 2001 June 13 FNAL Ren é Brun CERN
Axel Naumann. Nada FTE  LLVM + cling would take 4 years  when done, move to next hot-spot in ROOT Axel Naumann ROOT Team Meeting2.
Ian Bird Overview Board; CERN, 8 th March 2013 March 6, 2013
Latest Improvements in the PROOF system Bleeding Edge Physics with Bleeding Edge Computing Fons Rademakers, Gerri Ganis, Jan Iwaszkiewicz CERN.
Latest Improvements in the PROOF system Bleeding Edge Physics with Bleeding Edge Computing Fons Rademakers, Gerri Ganis, Jan Iwaszkiewicz CERN.
Analysis experience at GSIAF Marian Ivanov. HEP data analysis ● Typical HEP data analysis (physic analysis, calibration, alignment) and any statistical.
Dynamic staging to a CAF cluster Jan Fiete Grosse-Oetringhaus, CERN PH/ALICE CAF / PROOF Workshop,
DZero Monte Carlo Production Ideas for CMS Greg Graham Fermilab CD/CMS 1/16/01 CMS Production Meeting.
Proposal for the MEG Offline System Assisi 9/21/2004Corrado Gatto General Architecture Computing Model Organization & Responsibilities Milestones.
LHCC Referees Meeting – 28 June LCG-2 Data Management Planning Ian Bird LHCC Referees Meeting 28 th June 2004.
ROOT Geometry PackageL1 The New ROOT Geometry Package ACAT2002 Moscow 24 June Ren é Brun, Andrei & Mihaela Gheata CERN.
Follow-up to SFT Review (2009/2010) Priorities and Organization for 2011 and 2012.
ACAT 2010 Axel Naumann. What? International Workshop …on Advanced Computing …and Analysis Techniques …in Physics Research "Beyond the Cutting edge in.
ROOT and PROOF Tutorial Arsen HayrapetyanMartin Vala Yerevan Physics Institute, Yerevan, Armenia; European Organization for Nuclear Research (CERN)
ATLAS Physics Analysis Framework James R. Catmore Lancaster University.
PROOF on multi-core machines G. GANIS CERN / PH-SFT for the ROOT team Workshop on Parallelization and MultiCore technologies for LHC, CERN, April 2008.
ROOT : Outlook and Developments WLCG Jamboree Amsterdam June 2010 René Brun/CERN.
HYDRA Framework. Setup of software environment Setup of software environment Using the documentation Using the documentation How to compile a program.
Persistent Object References in ROOT1 Persistent Object References in ROOT I/O Status & Proposal LCG meeting CERN- 5 June Ren é Brun ftp://root.cern.ch/root/longrefs.ppt.
Ideas for ROOT in the future
Dirk Düllmann CERN Openlab storage workshop 17th March 2003
Summer Students Lecture 21 July 2004
Support for ”interactive batch”
Presentation transcript:

Challenges in Long Term Computing Models 1 Challenges in Long Term Computing Models ROOT Solutions First Workshop on Data Preservation And Long Term Analysis in HEP DESY 27 January 2009 Ren é Brun CERN

Everything changes Rene Brun Challenges in Long Term Computing Models2 tapes HDD SDD DVD Application packages Atlas with more than classes

Rene Brun Challenges in Long Term Computing Models3 A long time ago With the advent of time sharing systems like VAX/VMS, then personal work stations, the request for interactive analysis systems is growing. Two systems emerge in 1982 HTV at CERN (interactive histogram presenter) GEP at DESY (support for vectors/tuples) Attempt to combine these two systems in 1984 fails (GEP was written in PL1)

Rene Brun Challenges in Long Term Computing Models4 BOS, ZEBRA: The banks era Designed for Fortran aplications. Mainly 2 data types: ints and floats Could describe complex structures Self-described bank format (3 ints, then floats) Up to the application to interpret contents No schema evolution Not appropriate for languages supporting derived data types

Rene Brun Challenges in Long Term Computing Models5 The PAW era (1984  ) First version end 1984: No ntuples A command line interface KUIP An “abstract” interface to graphics (HIGZ) with implementations for the CORE system (US), GKS, Apollo graphics, PHIGS New data set format (Zebra/RZ) with support for row- wise ntuples

Rene Brun Challenges in Long Term Computing Models6 The PAW era (2) New version end 1986 A ntuple query system (ntuple/plot) Column-wise ntuples Fortran interpreter: COMIS Successful system for the final steps of data analysis. Still in use today in many places. However, the PAW file format was not designed to support collections of large data sets.

Rene Brun Challenges in Long Term Computing Models7 LHC software: first steps: 1994 First attempts to organize the software for LHC RD44 (Geant4) and RD45 (objy) projects Some gurus predict that Object-Oriented data bases will dominate the market in 2000 Painful move to C++ Commercial software approach (LHC++) Transient model = persistent model Central data base, single point of failure No schema evolution

Rene Brun Challenges in Long Term Computing Models8 ROOT project starts: 1995 Based on previous experience with PAW/GEANT Use C++ for interpreter Use lessons learned with PAW and ZEBRA I/O Design for very large data sets (mainly read-only) Object-Orientation; GUI, Graphics, I/O Quickly realize importance of object dictionaries From custom streamers to automatic schema evolution. Member-wise streaming vs object-wise streaming Query system very important Design for Parallelism and Network Access

Rene Brun Challenges in Long Term Computing Models9 HDF, HDF5 The Hierarchical Data Format is the standard in the astronomy, astrophysics world. Very good attempt to structure data sets in files BUT, missing the essential components to automatically build in memory complex data structures (application task!) No support for automatic schema evolution Efficient network access left to the application

I/O packages evolution in HEP Rene Brun Challenges in Long Term Computing Models10

CERNLIB to ROOT Rene Brun Challenges in Long Term Computing Models11

ROOT shared libs Rene Brun Challenges in Long Term Computing Models12 libASImage.so libGpad.so libProof.so libSpectrum.so libXrdSecgsi.so libASImageGui.so libGraf.so libProofDraw.so libSpectrumPainter.so libXrdSecgsiGMAPLDAP.so libCint.so libGraf3d.so libProofPlayer.so libSrvAuth.so libXrdSeckrb5.so libCintex.so libGui.so libProofx.so libTMVA.so libXrdSecpwd.so libCore.so libGuiBld.so libQuadp.so libTable.so libXrdSecsss.so libEG.so libGuiHtml.so libRGL.so libThread.so libXrdSecunix.so libEGPythia6.so libHbook.so libRIO.so libTree.so libXrdSut.so libEGPythia8.so libHist.so libRLDAP.so libTreePlayer.so libdequeDict.so libEve.so libHistPainter.so libRODBC.so libTreeViewer.so liblistDict.so libFFTW.so libHtml.so libRecorder.so libUnuran.so libmap2Dict.so libFTGL.so libKrb5Auth.so libReflex.so libVMC.so libmapDict.so libFitPanel.so libMLP.so libReflexDict.so libX3d.so libminicern.so libFoam.so libMathCore.so libRint.so libXMLIO.so libmultimap2Dict.so libFumili.so libMathMore.so libRooFit.so libXMLParser.so libmultimapDict.so libGX11.so libMatrix.so libRooFitCore.so libXrdBwm.so libmultisetDict.so libGX11TTF.so libMinuit.so libRooStats.so libXrdClient.so libsetDict.so libGdml.so libMinuit2.so libRootAuth.so libXrdCrypto.so libvalarrayDict.so libGed.so libNet.so libRuby.so libXrdCryptossl.so libvectorDict.so libGenVector.so libNetx.so libSPlot.so libXrdOfs.so libGeom.so libNew.so libSQL.so libXrdProofd.so libGeomBuilder.so libPhysics.so libSessionViewer.so libXrdRootd.so libGeomPainter.so libPostscript.so libSmatrix.so libXrdSec.so You dynamically load what you use

ROOT Files and Trees Analysis model Rene Brun Challenges in Long Term Computing Models13

Rene Brun Challenges in Long Term Computing Models14 ROOT file structure

TFile::Map Rene Brun Challenges in Long Term Computing Models15 root [0] TFile *falice = TFile::Open(" root [1] falice->Map() / At:100 N=120 TFile / At:220 N=274 TH1D CX = / At:494 N=331 TH1D CX = / At:825 N=290 TH1D CX = 2.80 … / At: N=1010 TH1D CX = 3.75 Address = Nbytes = -889 =====G A P=========== / At: N=2515 TBasket CX = / At: N=23141 TBasket CX = / At: N=2566 TBasket CX = / At: N=2518 TBasket CX = / At: N=2515 TBasket CX = / At: N=2023 TBasket CX = / At: N=2518 TBasket CX = / At: N= TTree CX = / At: N=43823 TTree CX = / At: N=6340 TH2F CX = / At: N=951 TH1F CX = / At: N=16537 StreamerInfo CX = / At: N=1367 KeysList / At: N=1 END root [2] root [0] TFile *falice = TFile::Open(" root [1] falice->Map() / At:100 N=120 TFile / At:220 N=274 TH1D CX = / At:494 N=331 TH1D CX = / At:825 N=290 TH1D CX = 2.80 … / At: N=1010 TH1D CX = 3.75 Address = Nbytes = -889 =====G A P=========== / At: N=2515 TBasket CX = / At: N=23141 TBasket CX = / At: N=2566 TBasket CX = / At: N=2518 TBasket CX = / At: N=2515 TBasket CX = / At: N=2023 TBasket CX = / At: N=2518 TBasket CX = / At: N= TTree CX = / At: N=43823 TTree CX = / At: N=6340 TH2F CX = / At: N=951 TH1F CX = / At: N=16537 StreamerInfo CX = / At: N=1367 KeysList / At: N=1 END root [2] Classes dictionary List of keys

TFile::ls Rene Brun Challenges in Long Term Computing Models16 root [3] falice->ls() KEY: TH1D logTRD_backfit;1 KEY: TH1D logTRD_refit;1 KEY: TH1D logTRD_clSearch;1 KEY: TH1D logTRD_X;1 KEY: TH1D logTRD_ncl;1 KEY: TH1D logTRD_nclTrack;1 KEY: TH1D logTRD_minYPos;1 KEY: TH1D logTRD_minYNeg;1 KEY: TH2D logTRD_minD;1 KEY: TH1D logTRD_minZ;1 KEY: TH1D logTRD_deltaX;1 KEY: TH1D logTRD_xCl;1 KEY: TH1D logTRD_clY;1 KEY: TH1D logTRD_clZ;1 KEY: TH1D logTRD_clB;1 KEY: TH1D logTRD_clG;1 KEY: TTree esdTree;1 Tree with ESD objects KEY: TTree HLTesdTree;1 Tree with HLT ESD objects KEY: TH2F TOFDig_ClusMap;1 KEY: TH1F TOFDig_NClus;1 KEY: TH1F TOFDig_ClusTime;1 KEY: TH1F TOFDig_ClusToT;1 KEY: TH1F TOFRec_NClusW;1 KEY: TH1F TOFRec_Dist;1 KEY: TH2F TOFDig_SigYVsP;1 KEY: TH2F TOFDig_SigZVsP;1 KEY: TH2F TOFDig_SigYVsPWin;1 KEY: TH2F TOFDig_SigZVsPWin;1 root [3] falice->ls() KEY: TH1D logTRD_backfit;1 KEY: TH1D logTRD_refit;1 KEY: TH1D logTRD_clSearch;1 KEY: TH1D logTRD_X;1 KEY: TH1D logTRD_ncl;1 KEY: TH1D logTRD_nclTrack;1 KEY: TH1D logTRD_minYPos;1 KEY: TH1D logTRD_minYNeg;1 KEY: TH2D logTRD_minD;1 KEY: TH1D logTRD_minZ;1 KEY: TH1D logTRD_deltaX;1 KEY: TH1D logTRD_xCl;1 KEY: TH1D logTRD_clY;1 KEY: TH1D logTRD_clZ;1 KEY: TH1D logTRD_clB;1 KEY: TH1D logTRD_clG;1 KEY: TTree esdTree;1 Tree with ESD objects KEY: TTree HLTesdTree;1 Tree with HLT ESD objects KEY: TH2F TOFDig_ClusMap;1 KEY: TH1F TOFDig_NClus;1 KEY: TH1F TOFDig_ClusTime;1 KEY: TH1F TOFDig_ClusToT;1 KEY: TH1F TOFRec_NClusW;1 KEY: TH1F TOFRec_Dist;1 KEY: TH2F TOFDig_SigYVsP;1 KEY: TH2F TOFDig_SigZVsP;1 KEY: TH2F TOFDig_SigYVsPWin;1 KEY: TH2F TOFDig_SigZVsPWin;1

TFile::MakeProject Rene Brun Challenges in Long Term Computing Models17 (macbrun2) [253] root -l root [0] TFile *falice = TFile::Open(" root [1] falice->MakeProject("alice","*","++"); MakeProject has generated 26 classes in alice alice/MAKEP file has been generated Shared lib alice/alice.so has been generated Shared lib alice/alice.so has been dynamically linked root [2].!ls alice AliESDCaloCluster.h AliESDZDC.h AliTrackPointArray.h AliESDCaloTrigger.h AliESDcascade.h AliVertex.h AliESDEvent.h AliESDfriend.h MAKEP AliESDFMD.h AliESDfriendTrack.h alice.so AliESDHeader.h AliESDkink.h aliceLinkDef.h AliESDMuonTrack.h AliESDtrack.h aliceProjectDict.cxx AliESDPmdTrack.h AliESDv0.h aliceProjectDict.h AliESDRun.h AliExternalTrackParam.h aliceProjectHeaders.h AliESDTZERO.h AliFMDFloatMap.h aliceProjectSource.cxx AliESDTrdTrack.h AliFMDMap.h aliceProjectSource.o AliESDVZERO.h AliMultiplicity.h AliESDVertex.h AliRawDataErrorLog.h root [3] (macbrun2) [253] root -l root [0] TFile *falice = TFile::Open(" root [1] falice->MakeProject("alice","*","++"); MakeProject has generated 26 classes in alice alice/MAKEP file has been generated Shared lib alice/alice.so has been generated Shared lib alice/alice.so has been dynamically linked root [2].!ls alice AliESDCaloCluster.h AliESDZDC.h AliTrackPointArray.h AliESDCaloTrigger.h AliESDcascade.h AliVertex.h AliESDEvent.h AliESDfriend.h MAKEP AliESDFMD.h AliESDfriendTrack.h alice.so AliESDHeader.h AliESDkink.h aliceLinkDef.h AliESDMuonTrack.h AliESDtrack.h aliceProjectDict.cxx AliESDPmdTrack.h AliESDv0.h aliceProjectDict.h AliESDRun.h AliExternalTrackParam.h aliceProjectHeaders.h AliESDTZERO.h AliFMDFloatMap.h aliceProjectSource.cxx AliESDTrdTrack.h AliFMDMap.h aliceProjectSource.o AliESDVZERO.h AliMultiplicity.h AliESDVertex.h AliRawDataErrorLog.h root [3] Generate C++ header files and shared lib for the classes in file Generate C++ header files and shared lib for the classes in file

Rene Brun Challenges in Long Term Computing Models18 Memory Tree Each Node is a branch in the Tree tr T.Fill() T.GetEntry(6) T Memory

Rene Brun Challenges in Long Term Computing Models19 8 Branches of T 8 leaves of branch Electrons A double-click to histogram the leaf

Rene Brun Challenges in Long Term Computing Models20 Data Volume & Organisation 100MB1GB10GB1TB100GB100TB1PB10TB TTree TChain A TChain is a collection of TTrees or/and TChains A TFile typically contains 1 TTree A TChain is typically the result of a query to the file catalogue

Rene Brun Challenges in Long Term Computing Models21 Access Transparency TFile *f1 = TFile::Open(“local.root”) TFile *f2 = TFile::Open(“root://cdfsga.fnal.gov/bigfile.root”) TFile *f3 = TFile::Open(“rfio:/castor.cern.ch/alice/aap.root”) TFile *f4 = TFile::Open(“dcache://main.desy.de/h1/run2001.root”) TFile *f5 = TFile::Open(“chirp://hep.wisc.edu/data1.root”) TFile *f5 = TFile::Open(“

Rene Brun Challenges in Long Term Computing Models22 From the desktop to the GRID Parallelism at all levels Desktop Local/remote Storage Online/Offline Farms GRID a transparent way Data analysis tools must be able to exploit parallelism on the laptop, use remote CPUS in parallel, and storage elements and networks in a transparent way

Rene Brun Challenges in Long Term Computing Models23

Rene Brun Challenges in Long Term Computing Models24 once on your client once on each slave TSelector: Our recommended analysis skeleton for each tree for each event Classes derived from TSelector can run locally and in PROOF Begin() SlaveBegin() Init(TTree* tree) Process(Long64_t entry) SlaveTerminate() Terminate()

Rene Brun Challenges in Long Term Computing Models25 Storage element WN VOBOX::SA xrootd (master) MSS xrootd (worker) Disk SRM xrootd (worker) DPM xrootd (worker) Castor SRM MSS xrootd emulation (worker) dCache SRM DPM, CASTOR, dCache are LCG-developed SEs

ACAT2002 ROOT Geometry Package26 Dectector Simulation DAQ Online ROOT can provide a solid base for: geometry, visualisation, interactivity, interpreter and persistency TVirtualMC Geant3 Fluka Geant4 KinematicsGeometry Hits, Digits This strategy facilitates migration or comparisons with a common input and a common output Geant3.tar.gz includes an upgraded Geant3 with a C++ interface Geant4_mc.tar.gz includes the TVirtualMC Geant4 interface classes Virtual Monte Carlo

Current developments Rene Brun Challenges in Long Term Computing Models27

CINT Interpreter replace important components by LLVM, a Just In Time compiler (JIT) LLVM is gcc compliant compiler(Open source project, sponsor Apple) the interpreter is the compiler this will introduce a more robust C++ parser (C++0x compliant) JIT will provide an excellent replacement for the internals of TFormula, TTreeFormula (code generated and compiled in a few milliseconds) Rene Brun Challenges in Long Term Computing Models28

PROOF, xrootd PROOF -in production in Alice -under evaluation by groups in Atlas, CMS -close cooperation with the xrootd developers -prototyping multi-core, SDD, HDD, zfs/Lustre, xrootd PROOF-LITE -mini version of PROOF designed for multi-core laptops -will become default-ROOT (automatic parallelism) XROOTD -important developments, robustness -caching and proxies wor LAN and WAN files Rene Brun Challenges in Long Term Computing Models29

Fitting, Stats ROOFIT -many developments by Wouter Verkerke (now Atlas) ROOSTATS -common project Atlas, CMS, etc for a statistics library -in very active development -based on ROOFIT Rene Brun Challenges in Long Term Computing Models30

We recommend Make your event model as simple as possible do not over-use the system (eg Atlas, CMS produce Trees with >6000 branches!) do not make derivations of the main ROOT objects like TH1, TTree. You must be able to browse your files with standard ROOT and without your classes. use TSelector as analysis model and not your own event loop think parallelism Rene Brun for Challenges in Long Term Computing Models31 for(int event=0;event<nevents;event++) { T->GetEvent(event); //do some analysis } T.Process(mySelector)

ROOT :Stability, Robustness Substantial manpower effort 10 FTE at CERN at FNAL Support in place for the LHC era Still many developments I/O robustness for LHC is vital I/O performance improvements Micro and macro parallelism : a must Rene Brun Challenges in Long Term Computing Models32 ROOT PROOF-LITE PROOF BATCH GRID INTERACTIVE

Doc + web site New ROOT web site will be introduced end of February (see snapshot at Better introduction for beginners Better tutorials Better look & feel Rene Brun Challenges in Long Term Computing Models33