A cross-equalization processing flow for off-the-shelf 4-D seismic data James Rickett Stanford University David E. Lumley Chevron Petroleum Technology.

Slides:



Advertisements
Similar presentations
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: The Linear Prediction Model The Autocorrelation Method Levinson and Durbin.
Advertisements

11/11/02 IDR Workshop Dealing With Location Uncertainty in Images Hasan F. Ates Princeton University 11/11/02.
(t,x) domain, pattern-based ground roll removal Morgan P. Brown* and Robert G. Clapp Stanford Exploration Project Stanford University.
Designer Seismic VSP Ernie Majer (LBNL) J. Queen ( Hi –Q Geophysics) T. Dalely (LBNL) Roy Long ( DOE)
Multi-Component Seismic Data Processing
Introduction to GeoProbe
Realigning and Unwarping MfD
The recovery of seismic reflectivity in an attenuating medium Gary Margrave, Linping Dong, Peter Gibson, Jeff Grossman, Michael Lamoureux University of.
74 th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012 Automated seismic-to-well ties? Roberto H. Herrera and Mirko van der Baan University.
Prestack Stolt residual migration Paul Sava* Stanford University Biondo Biondi Stanford University.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Bedrock Delineation by a Seismic Reflection/Refraction Survey at TEAD Utah David Sheley and Jianhua Yu.
Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University.
Autocorrelogram Migration of Drill-Bit Data Jianhua Yu, Lew Katz, Fred Followill, and Gerard T. Schuster.
Xi’an Jiaotong University 1 Quality Factor Inversion from Prestack CMP data using EPIF Matching Jing Zhao, Jinghuai Gao Institute of Wave and Information,
Youli Quan & Jerry M. Harris
MD + AVO Inversion Jianhua Yu, University of Utah Jianxing Hu GXT.
Interferometric Multiple Migration of UPRC Data
Autocorrelogram Migration for Field Data Generated by A Horizontal Drill-bit Source Jianhua Yu, Lew Katz Fred Followill and Gerard T. Schuster.
Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University.
4C Mahogony Data Processing and Imaging by LSMF Method Jianhua Yu and Yue Wang.
Demonstration of Super-Resolution and Super-Stacking Properties of Time Reversal Mirrors in Locating Seismic Sources Weiping Cao, Gerard T. Schuster, Ge.
Lecture 24: Cross-correlation and spectral analysis MP574.
4. Spectral Decomposition
Multisource Least-squares Reverse Time Migration Wei Dai.
Automatic detection and location of microseismic events
Implicit 3-D depth migration with helical boundary conditions James Rickett, Jon Claerbout & Sergey Fomel Stanford University.
Optical Flow Donald Tanguay June 12, Outline Description of optical flow General techniques Specific methods –Horn and Schunck (regularization)
Deconvolution Bryce Hutchinson Sumit Verma Objectives: -Understand the difference between exponential and surface consistent gain -Identify power line.
Processing Lab 9 Objectives: - View a timeslice - Consider binning effects on migration - Post stack Migration Sumit VermaBryce Hutchinson.
Uncertainty Maps for Seismic Images through Geostatistical Model Randomization Lewis Li, Paul Sava, & Jef Caers 27 th SCRF Affiliates’ Meeting May 8-9.
Beach Energy Ltd Lake Tanganyika 2D Marine Seismic Survey Data Processing, 2014 Squelch Tests for Streamer Noise Attenuation Lines BST14B24 and BST14B67.
Impact of MD on AVO Inversion
Seismic Imaging in GLOBE Claritas
SAMPLE IMAGE December 10th 2007 Software Product Management Massy 1 TIKIM “Kirchhoff pre-stack time migration” Overview (Jean-Claude LANCELOT) Meeting.
EXPLORATION GEOPHYSICS. EARTH MODEL NORMAL-INCIDENCE REFLECTION AND TRANSMISSION COEFFICIENTS WHERE:  1 = DENSITY OF LAYER 1 V 1 = VELOCITY OF LAYER.
Beach Energy Ltd Lake Tanganyika 2D Transition Zone Seismic Survey
Seismic Reflection Data Processing and Interpretation A Workshop in Cairo 28 Oct. – 9 Nov Cairo University, Egypt Dr. Sherif Mohamed Hanafy Lecturer.
WCRP Extremes Workshop Sept 2010 Detecting human influence on extreme daily temperature at regional scales Photo: F. Zwiers (Long-tailed Jaeger)
Signal Analysis and Imaging Group Department of Physics University of Alberta Regularized Migration/Inversion Henning Kuehl (Shell Canada) Mauricio Sacchi.
Data QC and filtering Bryce HutchinsonSumit Verma Objective: Consider the frequency range of different seismic features Look for low frequency and high.
Pitfalls in seismic processing : The origin of acquisition footprint Sumit Verma, Marcus P. Cahoj, Bryce Hutchinson, Tengfei Lin, Fangyu Li, and Kurt J.
Computing Attributers on Depth-Migrated Data Name : Tengfei Lin Major : Geophysics Advisor : Kurt J. Marfurt AASPI,The University of Oklahoma 1.
Fast Least Squares Migration with a Deblurring Filter Naoshi Aoki Feb. 5,
LEAST SQUARES DATUMING AND SURFACE WAVES PREDICTION WITH INTERFEROMETRY Yanwei Xue Department of Geology & Geophysics University of Utah 1.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
1 Prestack migrations to inversion John C. Bancroft CREWES 20 November 2001.
Green’s theorem requires the wavefield P and its normal derivative P n on the measurement surface as the input. In marine exploration, an over/under cable.
Geology 5660/6660 Applied Geophysics 12 Feb 2016
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
LSM Theory: Overdetermined vs Underdetermined
GDF Suez Holland E 16-4 VSP Part 1:
Vocoders.
QRS Detection Linda Henriksson 1.
Automatic Picking of First Arrivals
1 Vocoders. 2 The Channel Vocoder (analyzer) : The channel vocoder employs a bank of bandpass filters,  Each having a bandwidth between 100 HZ and 300.
SEISMIC DATA GATHERING.
Fundamentals Data.
4C Mahogony Data Processing and Imaging by LSMF Method
Passive Seismic Imaging
A pseudo-unitary implementation of the radial trace transform
The Relationship between Uncertainty and Quality in Seismic Data
The FOCI method versus other wavefield extrapolation methods
Summary: Lateral Resolution
High Resolution Velocity Analysis for Resource Plays
Just when you thought you were
Processing and Binning Overview
EXPLORATION GEOPHYSICS
Image Stitching Linda Shapiro ECE/CSE 576.
Image Stitching Linda Shapiro ECE P 596.
Presentation transcript:

A cross-equalization processing flow for off-the-shelf 4-D seismic data James Rickett Stanford University David E. Lumley Chevron Petroleum Technology Company

A cross-equalization processing flow for off-the-shelf 4-D seismic data James Rickett Stanford University David E. Lumley Chevron Petroleum Technology Company

Summary Gulf of Mexico dataset Motivation Cross-equalization issues Processing flow Results & conclusions

1979 survey

1991 survey

Motivation Cross-equalization important for 4D study –Remove processing/acquisition differences –Remaining differences are due to production Post-stack vs pre-stack –Pre-stack data not easily available –Post-stack analysis quicker and cheaper

Cross-equalization issues Geometry/binning Wavelet/spectra Gain functions Differential phase/statics Migration imaging/positioning

Cross-equalization issues Geometry/binning Wavelet/spectra Gain functions Differential phase/statics Migration imaging/positioning

34  difference in azimuth Bin-size: 41 x 41ft vs. 247 x 82ft

Cross-equalization issues Geometry/binning Wavelet/spectra Gain functions Differential phase/statics Migration imaging/positioning

Before matched-filteringAfter matched-filtering

Cross-equalization issues Geometry/binning Wavelet/spectra Gain functions Differential phase/statics Migration imaging/positioning

Envelope

Cross-equalization issues Geometry/binning Wavelet/spectra Gain functions Differential phase/statics Migration imaging/positioning

Cross-equalization issues Geometry/binning Wavelet/spectra Gain functions Differential phase/statics Migration imaging/positioning

1979 survey1991 survey

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

Survey co-alignment 1979 survey –Bandpass and gain correction –Resampled from 4 to 6ms 1991 survey –Remapped onto 1979 grid –Spatial anti-alias filter –Rotation with linear interpolation Common window and mask

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

difference After co-alignment...

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

Global corrections Matched-filter –Bandwidth and phase –Least squares –Bulk shift Amplitude scale

difference After co-alignment...

difference After global corrections...

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

Non-stationary matched filtering Separate filters for each trace Design window: –0.5 s to 2 s depth (reservoir at 3 s) –3 traces wide Short operator (23 points)

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

Amplitude balancing Corrects for –Different T.V. gain functions –Incorrect amplitudes from matched-filters Assume signal >> noise –Scale data based on R.M.S. energy

difference After global corrections...

difference After non-stationary filtering/gain correction...

Cross-equalization flow Survey co-alignment Global operators –Matched-filtering & gain correction Non-stationary operators –Matched-filtering & gain correction Warping

Different velocity fields –Effects positioning of imaged events –Need residual migration operator  v unknown –Need estimate operator from the data

Warping Algorithm –Calculate local 3-D cross-correlation functions –Pick maxima –Obtain smoothly varying warp function –Apply vector shifts by interpolation

Typical “warp function”... (magnified x2)

After non-stationary filtering/gain correction difference

difference After warping...

After realignment to common grid After global corrections

After non-stationary corrections After warping

"Normalized difference energy" = RMS(difference)  [ RMS(79 survey) + RMS(91 survey) ]

After global corrections After non-stationary corrections After warping After co-alignment Normalized difference energy

Conclusions Cross-equalization processing flow important for 4-D seismic monitoring Global operators not sufficient Spatially-variable operators required –Balance non-stationarity vs. degrees of freedom Warping –Residual map migration to correct for event mispositioning (e.g. due to migration velocity)

Conclusions Reduced non-reservoir differences using physical processing operators Enhanced reservoir differences –Now ready for 4-D interpretation

Acknowledgements CPTC’s 4-D team in La Habra Chevron for providing the data Sponsors of Stanford Exploration Project