1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
The ATLAS Pixel Detector
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
Stephanie Majewski Stanford University
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
C. Kiesling, 1st Open Meeting of the SuperKEKB Collaboration, KEK, Dec , The DEPFET-Project: European Collaboration for a Pixel SuperBelle.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
The CMS Silicon Strip Tracker Carlo Civinini INFN-Firenze On behalf of the CMS Tracker Collaboration Sixth International "Hiroshima" Symposium on the Development.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
6/19/06 Su DongSiD Advisory: VXD DOD Summary II1 VXD DOD Summary (II) Sensors & Other system Issues.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
1 Updates of EMCM Testing J. Haidl, C. Koffmane, F. Müller, M. Valentan 8th Belle II VXD Workshop September University of Trieste.
1 Test Beam with Hybrid 6 Florian Lütticke for the Testbeam Crew Bonn University 7th Belle II VXD Workshop and 18th International Workshop on DEPFET Detectors.
PXD ASIC review, October 2014 ASIC Review 1 H-.G. Moser, 18 th B2GM, June 2014 Date and Location MPP, October 27, 10:00 – October 28, 16:00, Room 313 Reviewers:
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
Test beam preparations Florian Lütticke, Mikhail Lemarenko, Carlos Marinas University of Bonn (Prof. Norbert Wermes) DEPFET workshop Ringberg (June 12-15,
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
H.-G. Moser, 6 th PXD/SVD workshop, Pisa, Oct PXD Summary 1 DEPFET Sensors production yield inter-metal insulation EMCM electronic tests ASICs Schedule.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
1 The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July , 2014 Ringberg Castle Kreuth, Germany Felix Mueller.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
PXD ASIC Review, Oct Ladislav Andricek, MPG Halbleiterlabor Belle II PXD Overview (An attempt to describe the) Interfaces between ASICs and the Experiment.
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Developing Radiation Hard Silicon for the Vertex Locator
Latest results of EMCM tests / measurements
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Christoph Schwanda (HEPHY Vienna) For the Belle II SVD group
Gated Mode - System Aspects
Gated Mode - System Aspects
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
PXD Summary Tests PXD9 Pilot Production ASICs Components Plans:
The Belle II Vertex Pixel Detector (PXD)
Flavour Physics Belle II experiment at SuperKEKB Tsukuba, Japan
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
FPCCD Vertex Detector for ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
CCD based Vertex Detector for GLC
Niels Tuning (Outer Tracker Group LHCb)
Status of CCD Vertex Detector R&D for GLC
Presentation transcript:

1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg Castle 2016, June 7, 2016

2 Belle II Vertex Detector Felix Müller, Young Scientist Workshop, Ringberg Castle Silicon Vertex Detector (SVD) 4 layers of double sided silicon strip detector R= 3.8 cm, 8.0 cm, 11.5 cm, 14 cm Silicon Vertex Detector (SVD) 4 layers of double sided silicon strip detector R= 3.8 cm, 8.0 cm, 11.5 cm, 14 cm Pixel Detector (PXD) 2 layers of DEPFET pixels R = 1.4 cm, 2.2 cm Pixel Detector (PXD) 2 layers of DEPFET pixels R = 1.4 cm, 2.2 cm Beam pipe: R=10mm

3 Belle II – PXD Requirements Felix Müller, Young Scientist Workshop, Ringberg Castle Occupancy~ 1 % Frame time20 µs (rolling shutter mode) Momentum rangeLow momentum (P t > 50 MeV/c) Acceptance17°-150° Radiation ~20 kGy/year, 1  n/ab -1 cm²  Belle II is dominated by low momentum tracks ( = 500 MeV/c)  Modest intrinsic resolution (15 μm), dominated by multiple scattering → Moderate pixel size (50 x 75 μm²)  Lowest possible material budget (0.2% X 0 /layer) [including ASICs]  Increase of background by factor 20-40: irreducible background by 2-photon QED process: Needs to cope with radiation damage, occupancy, fake hits and pile-up noise  100x higher trigger rate (30 kHz) compared to Belle  Silicon strip detector (SVD) close to beam pipe excluded (too large occupancy): replace by PXD

Felix Müller, Young Scientist Workshop, Ringberg Castle DEPFET (DEPleted p-channel Field Effect Transistor) impinging particle Clear Turn on DEPFET source Gate

Felix Müller, Young Scientist Workshop, Ringberg Castle Clear A DEPFET is a MOSFET onto a sideward depleted silicon bulk → Low noise → Low power → High signal/noise-ratio → Non-destructive readout → Low noise → Low power → High signal/noise-ratio → Non-destructive readout internal amplification: g q  0.5 nA/e - internal amplification: g q  0.5 nA/e - 90 steps fabrication process 9 Implantations 19 Lithographies 2 Polysilicon layers 2 Aluminum layers 1 Copper layer Back side processing 90 steps fabrication process 9 Implantations 19 Lithographies 2 Polysilicon layers 2 Aluminum layers 1 Copper layer Back side processing DEPFET (DEPleted p-channel Field Effect Transistor)

Felix Müller, Young Scientist Workshop, Ringberg Castle Control and readout electronics SWITCHER Fast voltage pulses up to 20 V 64 outputs gate and clear 192 electrical rows (6 per module) SWITCHER Fast voltage pulses up to 20 V 64 outputs gate and clear 192 electrical rows (6 per module) Drain Current Digitizer (DCD) 8 bit ADCs Compensates for pedestal variation 256 input channels (4 per module) Drain Current Digitizer (DCD) 8 bit ADCs Compensates for pedestal variation 256 input channels (4 per module) Kapton Flex cable Power Supply Data transmission 4 layers, 48 cm Kapton Flex cable Power Supply Data transmission 4 layers, 48 cm DEPFET 768x250 pixel x 2 Data Handling Processor (DHP) Pedestal correction Common mode correction Data reduction (triggered readout and zero suppression) Control of DCDs and Switcher Data Handling Processor (DHP) Pedestal correction Common mode correction Data reduction (triggered readout and zero suppression) Control of DCDs and Switcher Pixel i,j,v

7 Additional steps in module production (1) Felix Müller, Young Scientist Workshop, Ringberg Castle From Semiconductor Laboratory: Silicon: All implants Metallization routings Thinned to 75 µm Missing: Assembly of (control and readout) ASICs Berlin) Assembly of passives (SMD components) Semiconductor Laboratory) Attachment of Kapton flex (data and power connection) MPP) End-on gluing of two modules to a self-supporting ladder MPP)

Felix Müller, Young Scientist Workshop, Ringberg Castle Additional steps in module production (2) DEPFETs Switcher SMD DCD Drain Current Digitizer DHP Data Handling Processor Sensitive areas: inner layer: ~ 45 x 13 mm² outer layer: ~ 61 x 13 mm² Module sizes: inner layer: ~ 70 x 15 mm² outer layer: ~ 85 x 15 mm² thinned area (75 µm)

9 PXD9 Pilot Run Drain Current Digitizer Data Handling Processor 768 x 250 = DEPFETs Switcher Current Capacitors & Resistors SMD 01005, 0201, Felix Müller, Young Scientist Workshop, Ringberg Castle careful handling of sensor required, protected by special jig (grounding, cooling, electrical insulation)

10 PXD9 – W30-OB1 – Pedestals Felix Müller, Young Scientist Workshop, Ringberg Castle

11 PXD9 – W30-OB1 – Noise µ=0.60 ADUµ=0.63 ADU µ=0.59 ADUµ=0.60 ADU Felix Müller, Young Scientist Workshop, Ringberg Castle

12 PXD9 – W30-OB1 – Laser scan Laser signal ~2-4mip, read out at full speed with a noise of ~1.8 ADU (laser instability and system noise) ~105 ns/row, of which ~26ns are used for clear pulse (8 ticks of 32) Felix Müller, Young Scientist Workshop, Ringberg Castle

13 PXD9 – W30-1 – Clear behavior OB  Consecutive frames are readout  Timing of the laser set to have one laser pulse within 4 frames  Threshold of zero suppression is set to 5 ADU Laser spot 91ADU Felix Müller, Young Scientist Workshop, Ringberg Castle

14 PXD9 – W30-OB1 – Source Measurement Felix Müller, Young Scientist Workshop, Ringberg Castle

15 TestBeam April DESY (1) 66 registrants from 10 countries for beam test in April 16 at DESY Complete system integration test (2 layers PXD, 4 layers SVD) Felix Müller, Young Scientist Workshop, Ringberg Castle Layer 2 Layer 1 Cool block (CO 2 pipes)

16 Test Beam April DESY (2) Felix Müller, Young Scientist Workshop, Ringberg Castle 1 T solenoid 6 GeV electrons 6 layers telescope, 4 layers SVD, 2 layers PXD e-e- SVD PXD e-e-

17 Preliminary TestBeam Analysis – Layer1 Module Felix Müller, Young Scientist Workshop, Ringberg Castle

Felix Müller, Young Scientist Workshop, Ringberg Castle Summary and Outlook  To fully exploit the high luminosity provided by SuperKEKB, a pixel detector close to the beam pipe is mandatory for the precise vertex reconstruction  PXD: Excellent spatial resolution of ~ 15  m; occupancy ~ 1%, fast readout (50 kHz frame rate), huge number of pixels (~ 8 Mpix) => fits all the requirements for Belle II  Complex DEPFET technology; fully functional; successful demonstration in lab and beam tests  Thinning of sensitive area down to 50µm / 75  m (0.2% X 0 ), minimizing multiple scattering;  Low power consumption ~ 18 W per ladder  ASICs and Sensors close to final version  Signal to Noise: ~ 40 (including noise from ASICs)  Many aspects not covered in this talk; though in development by the Collaboration  Shows a good clear performance over the entire sensitive area  Shows spectrum of all 24 DCD/Switcher regions with reduced speed Outlook:  Optimization of ASIC settings & Supply voltages  Analysis of beam test data during the next weeks  Further detector characterization & optimization

19 Radiation Tolerance Felix Müller, Young Scientist Workshop, Ringberg Castle R&D since 2008:  Reduce t ox  Optimize gate dielectric layer  Vt(10Mrad): ~15V  3 V The remaining small threshold voltage shift can easily be compensated by a shift of the operating voltages of the DEPFET!  Safe operation for about 10 years in Belle II

20 Radiation Tolerance Felix Müller, Young Scientist Workshop, Ringberg Castle Gate Dielectrics: ~ 200nm  Radiation field at Belle II dominated by ~MeV electrons/positrons from QED beam background Ionizing Radiation - Total Ionizing Dose (TID) (~2Mrad/a at Belle II) Positive fixed oxide positive charge  ∆V T interface trap density  reduced mobility (g m ) higher 1/f noise Non Ionizing Energy Loss (NIEL) (10 12 n eq /cm²/year at Belle II) Leakage current increase  shot noise Trapping not considered to be critical Type inversion expected after n eq /cm²

21 Time dependent measurements of CP violation (Belle: ~200µm) Y(4S) is the first resonance just above the BB production threshold Only BB pairs are produced, and are quasi at rest in the Y(4S) frame Felix Müller, Young Scientist Workshop, Ringberg Castle