Stellar Spectrum Analysis for Automated Estimation of Atmospheric Parameter 李乡儒 2015. 11.28 Collaborators : Ali Luo, Yongheng Zhao, Georges Comte, Fang.

Slides:



Advertisements
Similar presentations
Structural Equation Modeling analysis for causal inference from multiple -omics datasets So-Youn Shin, Ann-Kristin Petersen Christian Gieger, Nicole Soranzo.
Advertisements

Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
基于 LAMOST 巡天数据的大样 本 M 巨星搜寻和分类 钟靖 中国科学院上海天文台. M giants Red : surface temperature lower than 4000K Luminous: M J from to mag (Covey et al.2007)
Data-model assimilation for manipulative experiments Dr. Yiqi Luo Botany and microbiology department University of Oklahoma, USA.
Content-based retrieval of audio Francois Thibault MUMT 614B McGill University.
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
Coefficient Path Algorithms Karl Sjöstrand Informatics and Mathematical Modelling, DTU.
Psychology 202b Advanced Psychological Statistics, II February 10, 2011.
João Pedro Marques Mário João Monteiro CESAM2K CoRoT/ESTA - Aarhus Workshop.
Optimal Bandwidth Selection for MLS Surfaces
Obstacle detection using v-disparity image
Compilation of stellar fundamental parameters from literature : high quality observations + primary methods Calibration stars for astrophysical parametrization.
Optimal Adaptation for Statistical Classifiers Xiao Li.
Lasso regression. The Goals of Model Selection Model selection: Choosing the approximate best model by estimating the performance of various models Goals.
Diagnosis of Ovarian Cancer Based on Mass Spectrum of Blood Samples Committee: Eugene Fink Lihua Li Dmitry B. Goldgof Hong Tang.
The LAMOST 1d Spectroscopic Pipeline A-Li LUO LAMOST team, NAOC 2008/12/3 The KIAA-Cambridge Joint Workshop on Near-Field Cosmology and Galactic Archeology.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
EE513 Audio Signals and Systems Statistical Pattern Classification Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Atmospheric tomography of supergiant stars (starring μ Cep) Alain Jorissen, Sophie Van Eck, Kateryna Kravchenko (Université Libre de Bruxelles) Andrea.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
SALTLIB Proposal for a Stellar Spectral Library using H. P. Singh, Department of Physics & Astrophysics University of Delhi, Delhi – ,
Jeff Howbert Introduction to Machine Learning Winter Regression Linear Regression.
Correspondence-Free Determination of the Affine Fundamental Matrix (Tue) Young Ki Baik, Computer Vision Lab.
Chapter 21 R(x) Algorithm a) Anomaly Detection b) Matched Filter.
Data products of GuoShouJing telescope(LAMOST) pipeline and current problems LUO LAMOST Workshop.
SDSS photo-z with model templates. Photo-z Estimate redshift (+ physical parameters) –Colors are special „projection” of spectra, like PCA.
Multivariate Dyadic Regression Trees for Sparse Learning Problems Xi Chen Machine Learning Department Carnegie Mellon University (joint work with Han Liu)
EÖTVÖS UNIVERSITY BUDAPEST Department of Physics of Complex Systems Photometric parallax estimation using the MILES catalog and BaSeL models István Csabai.
Stellar parameters estimation using Gaussian processes regression Bu Yude (Shandong University at Weihai)
Jessica Lu (UH IfA) Andrew Mann (UT Austin) Radial trends in IMF-sensitive absorption features in two early-type galaxies: evidence for abundance-driven.
Modeling the Shape of a Scene: Seeing the trees as a forest Scene Understanding Seminar
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
Determination of stellar fundamental parameters using Artificial Intelligence techniques. Luis M. Sarro. Dpto. Inteligencia Artificial, UNED / Spanish.
1 Spectroscopic survey of LAMOST Yongheng Zhao (National Astronomical Observatories of China) On behalf of the LAMOST operation team.
CpSc 881: Machine Learning
Vince Oliver PhD student of ELTE University Budapest  Assignments within MAGPOP project.
Population synthesis models and the VO
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
1 Baryon Acoustic Oscillations Prospects of Measuring Dark Energy Equation of State with LAMOST Xuelei Chen ( 陳學雷 ) National Astronomical Observatory of.
Tim Pearson US Planck Data Analysis Review 9-10 May 2006 US Planck Data Analysis Review Source Extraction Tim Pearson.
BBN abundance observations Karl Young and Taryn Heilman Astronomy 5022 December 4, 2014.
An Introduction of Independent Component Analysis (ICA) Xiaoling Wang Jan. 28, 2003.
Chemical Compositions of Stars from IGRINS Spectra; the Good, the Risky, and the Ugly some comments on the uses and abuses of ordinary stellar abundance.
Miguel CerviñoESAC 23 March 2007 How to use the SEDs produced by synthesis models? Miguel Cerviño (IAA-CSIC/SVO) Valentina Luridiana (IAA-CSIC/SVO)
Pisa, 4 May 2009 Alessandro Spagna A new kinematic survey (from GSC-II and SDSS-DR7) to study the stellar populations of the Milky Way Alessandro Spagna.
Open Cluster Study in the LAMOST DR2 Jing Zhong ( Shanghai Astronomical Observatory ) Collaborators: Li Chen, Zhengyi Shao.
Stock market forecasting using LASSO Linear Regression model
Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation Rendong Yang and Zhen Su Division of Bioinformatics,
Data Mining: Concepts and Techniques1 Prediction Prediction vs. classification Classification predicts categorical class label Prediction predicts continuous-valued.
Coryn Bailer-Jones, ADASS XVII, September 2007, Kensington A method for exploiting domain information in parameter estimation Coryn Bailer-Jones Max Planck.
Abundance analysis on Late G giants — 59 stars of Xinglong Planet search sample Yujuan Liu( 劉玉娟 ) NAOC/NAOJ Ando H., G. Zhao, Sato Bun’ei, Takeda Y.,
Spectral classification of galaxies of LAMOST DR3
Astrostatistics Antonios Karampelas, PhD
Photometric redshift estimation.
Learning Mid-Level Features For Recognition
Behavior of Reddenings in the Color-Magnitude & Color-Color Diagrams of SDSS Filters 김성수, 이명균.
Table of Contents TDD ratio estimation scheme for WiBro system with exible TDD frame structure 1 Eu-Suk Shim, Young-Il Kim, and Won Lyu Analysis on the.
The Elements of Statistical Learning
Joleen Carlberg July 12, 2017 Abstract:
Food adulteration analysis without laboratory prepared or determined reference food adulterant values John H. Kalivasa*, Constantinos A. Georgioub, Marianna.
Population synthesis models and the VO
Classification of GAIA data
Speaker: Longbiao Li Collaborators: Yongfeng Huang, Zhibin Zhang,
OR for selected baseline predictors of MDA at weeks 12, 24, 48, 96 and 144 by multivariate analysis of observed data. OR for selected baseline predictors.
Jiannan Zhang, Yihan Song, Ali Luo NAOC, CHINA
Subaru HDS Ground-based Transmission Spectroscopy
Rich QR Codes With Three-Layer Information Using Hamming Code
Presentation transcript:

Stellar Spectrum Analysis for Automated Estimation of Atmospheric Parameter 李乡儒 Collaborators : Ali Luo, Yongheng Zhao, Georges Comte, Fang Zuo, Q.M. Jonathan Wu, Tan Yang, Yongjun Wang, Yu Lu

Contents Xiangru Li, Q.M. Jonathan Wu, Ali Luo, Yongheng Zhao, Yu Lu, Fang Zuo, Tan Yang, Yongjun Wang, 2014, ApJ, 790, 105 X. Li, Yu Lu, G. Comte, Ali Luo, Yongheng Zhao, Yongjun Wang, 2015, ApJS, 218,3 Yu Lu, X. Li, 2015, MNRAS, 452(2): 1394 Tan Yang, X. Li, 2015, MNRAS, 2015, 452, 158 Problem, Available Schemes and Objective Sparse Feature Extraction Linearly Supporting Features Extraction Adaptive Basic Structure Elements and Spectral Feature Extraction

Problem

Available Schemes and Objective Template Matching Method Statistical Index Scheme Line Index Method Physical Interpretability Robustness local, sparse

Problem and Objective Detection Description Estimation

SDSS Data 50000, [4088, 9740]K for Teff, [1.015, 4.998] dex for log g, [ ]dex for [Fe/H]

LAMOST Data [3853.2, 9927] K for Teff, [0.8920, ] dex for log g, [ ] dex for [Fe/H]

Synthetic Data Kurucz’s NEWODF models, SPECTRUM package [4000, 9750] K for Teff, 45 values, step sizes of 100 K between 4000 and 7500, 205 K between 7750 and 9750 K [1, 5] dex for log g, 17 values, step size of 0.25 dex [ ]dex for [Fe/H], 27 values, step size of 0.2 dex between -3.6 and -1 dex, and 0.1 dex between -1 and 0.3 dex

Sparse Feature Extraction Xiangru Li, Q.M. Jonathan Wu, Ali Luo, Yongheng Zhao, Yu Lu, Fang Zuo, Tan Yang, Yongjun Wang, 2014, ApJ, 790, 105

Detection LASSO (least absolute shrinkage and selection operator)

Detection

Re Fiorentin, P., et al. 2007, A&A, 467, %

Detection

Description and Estimation Point Description (PD) Local Integration (LI)

Experimental Results On Real Spectra Re Fiorentin, P., et al. 2007, A&A, 467, 1373

Experimental Results On Synthetic Spectra

Compactness 99.74% On Real Spectra Re Fiorentin, P., et al. 2007, A&A, 467, 1373

Linearity v.s. nonlinearity

Other typical non-linear estimators Feedforward neural network Generalized Additive Models Multivariate Adaptive Regression Splines Random Forest

Linearly Supporting Features Extraction X. Li, Yu Lu, G. Comte, Ali Luo, Yongheng Zhao, Yongjun Wang, 2015, ApJS, 218,3 Yu Lu, X. Li, 2015, MNRAS, 452(2): 1394

Linearly Supporting Feature Extraction

Dissolution of nonlinearity Dependeny of effectiveness on wavelength and frequency

For log g, [Fe/H] …

Adaptive Basic Structure Elements and Spectral Feature Extraction Tan Yang, X. Li, 2015, MNRAS, 2015, 452, 158

谢谢大家!