H.-G. Moser Max-Planck-Institut für Physik 22.06.2016 1 Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+)

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Jim Brau ACFA Linear Collider Workshop, Beijing February 6, Development of an ILC vertex detector sensor with single bunch crossing tagging Chronopixel.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Si Pixel Tracking Detectors Introduction Sensor Readout Chip Mechanical Issues Performance -Diamond.
Vertexing for SID status N. B. Sinev University of Oregon, Eugene 1 April 23, 2015,A LCW2015, Japan Nick Sinev.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
Outline: Motivation for a backside illuminated SiPM (BID-SiPM)
Jim Brau LCWS07, DESY May 31, Development of an ILC vertex detector sensor with single bunch crossing tagging Chronopixel ł Sensors for the ILC J.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI Apr Pixel Detectors based on 3D.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
IWLC 2010 – Ivan Peric 1 Particle pixel detectors in high-voltage CMOS technology Ivan Peric University of Heidelberg.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Foundry Characteristics
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Position Sensitive Detectors in HEP
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Ideas for Super LHC tracking upgrades 3/11/04 Marc Weber We have been thinking and meeting to discuss SLHC tracking R&D for a while… Agenda  Introduction:
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Trends in MONOLITHIC DETECTORS and ADVANCED CMOS MANUFACTURING W. Snoeys ESE Seminar October 14 th 2014 PH-ESE-ME,
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
L. Ratti a,b, M. Dellagiovanna a, L. Gaioni a,b, M. Manghisoni b,c, V. Re b,c, G. Traversi b,c, S. Bettarini d,e, F. Morsani e, G. Rizzo d,e a Università.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Lepton-Photon 2009, Hamburg, August 18, Valerio Re - INFN Organization of Monolithic and Vertically Integrated Pixel Sensor R&D in the High Energy.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
 Silicon Vertex Detector Upgrade for the Belle II Experiment
INFN Pavia and University of Bergamo
CMOS pixel sensors & PLUME operation principles
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
HVCMOS Detectors – Overview
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Presentation transcript:

H.-G. Moser Max-Planck-Institut für Physik Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+) Requirements: High resolution (<10 µm) Low mass (<0.15% X 0 ) Fast readout (> 0.5 hits/µm²/sec) Radiation hardness (>10 MRad, > n/cm²) Technology: Thin detectors (~ 50 µm) High granularity (pitch < 25 µm) High S/N (>20, irradiated!) Low Power (100 mW/cm² => cooling by airflow) Fast readout (<1 µs per pixel, better 25ns time stamp) Complex data processing inside pixel

H.-G. Moser Max-Planck-Institut für Physik Belle II, ILC, CLIC Belle IIILCCLIC (integr)CLIC (stamp) rate hits/µm²/s hits/mm²/BX hits/mm²/train Bunch train bunches  T bunch ns time∞ µs repet550 Hz frame time µs hits/frame8.00E E E E-06hits/µm²/s pitch µm occupancy2.00%0.40%0.21%0.22% Belle II: occupancy rather high: upgrade with shorter frame time needed want a factor 10 (2-4 in sight – but not if pitch is reduced!) ILC: easy CLIC: integrated (frame) readout requires small pitch – not compatible time stamp: not compatible with frame readout

H.-G. Moser Max-Planck-Institut für Physik DEPFET FET on fully depleted silicon Baseline for Belle II PXD High granularity (resolution, occupancy) Yes High readout speed (complex processing) No: frame readout O(20 µs) Thin sensors (but keep high S/N) Yes, with good S/N Low power (0-mass cooling) Yes (because of rolling shutter) High fill factor (low mass) Yes: monolithic wafer scale sensors Add functionalities (calibration, 0-suppression, clustering) No (only in readout ASIC) Radiation hardness ok to 10 Mrad

H.-G. Moser Max-Planck-Institut für Physik State of the art: hybrid pixels Face to face interconnection: ASIC - Sensor Pitch: 50  m High granularity (resolution, occupancy) bump bonding limits pitch to O(50 µm) High readout speed (complex processing) Yes! Thin sensors (but keep high S/N) No (250 µm Sensor + ASIC + interconnect) Low power (0-mass cooling) No: liquid cooling needed High fill factor (low mass) No: 71% (ATLAS) Add functionalities (calibration, 0-suppression, clustering) ok, especially going to even smaller DSM Radiation hardness Yes (> n/cm²)

H.-G. Moser Max-Planck-Institut für Physik CMOS Sensors Charge collection by diffusion (in un-depleted epi layer) CMOS readout electronic integrated. Small signal, yet S/N > 20) High granularity (resolution, occupancy) yes (depends on functionality/pixel) High readout speed (complex processing) yes for triple well technology Thin sensors (but keep high S/N) yes (small signal anyway) Low power (0-mass cooling) yes (depends on speed and complexity) High fill factor (low mass) needs tiling Add functionalities (calibration, 0-suppression, clustering) yes, for triple well Radiation hardness marginal (cc by diffusion) high resistivity substrates become available Performance limited by use of NMOS only: slow, no complex processing Digital section Analog section Deep N-well sensing electrode P-well N-well NMOS PMOS P-type epilayer or substrate 2D CMOS technology Trends: triple well, deep p-well => full CMOS possible (complex, fast) high resistivity epi: depletion, fast, large signal (IBM 90 nm)

H.-G. Moser Max-Planck-Institut für Physik Bonded wafer : High Resistivity (Sensor) + Low Resistivity (CMOS). Truly Monolithic Detector (-> High Density, Low material, Thin Device). Standard CMOS can be used (-> Complex functions in a pixel). No mechanical bonding (-> High yield, Low cost). Fully depleted sensor with small capacitance of the sense node (~10fF, High conversion gain, Low noise) Based on standard technology No Latch Up, Rad Hard. Low Power 6 SOI Sensors High granularity (resolution, occupancy) yes High readout speed (complex processing) yes Thin sensors (but keep high S/N) yes Low power (0-mass cooling) yes (depends on speed and complexity) High fill factor (low mass) needs tiling Add functionalities (calibration, 0-suppression, clustering) yes, full CMOS available Radiation hardness DSM: yes: BOX ?

H.-G. Moser Max-Planck-Institut für Physik D Interconnection Basic Problem: How to integrate good sensors and good electronic circuits? 3D Interconnection: Two or more layers (=“tiers”) of thinned semiconductor devices interconnected to form a “monolithic” circuit.  Different layers can be made in different technology (high ohmic, BiCMOS, deep sub-  CMOS, SiGe,…..).  3D is driven by industry:  Reduces R,L and C.  Improves speed.  Reduces interconnect power, x-talk.  Reduces chip size.  Each layer can be optimized individually. Si pixel sensor BiCMOS analogue CMOS digital

H.-G. Moser Max-Planck-Institut für Physik CLIC09 CERN 15. Oct 09 8 HEP applications Digital section Deep N-well sensing electrode Analog section e 1 st tier Improved CMOS sensors Transfer most (if not all) of the PMOSFETs to 2nd tier (VIPIX) High CCE More functionality Or Use high resistivity CMOS as 1st tier (IPHC) Evolution of hybrid pixels  Thin devices  Smaller pitch (need good FE-ASIC!) Use DEPFET as first tier (intrinsic amplification, simpler FE-ASIC) Problem: power: all pixels on 80W/cm² => scaling: L ~ 1 µm => 1 W/cm²

H.-G. Moser Max-Planck-Institut für Physik 9  Alternative to bump bonding (less process steps “lower cost” (EMFT)).  Small pitch possible (~ 20  m, depending on pick & place precision).  Stacking possible (next bonding process does not affect previous bond).  Wafer to wafer and chip to wafer possible.  However: no rework possible. EMFT SLID Process FE-I3 Sensor 27  m Cu 3 Sn Cu 6 Sn 5

H.-G. Moser Max-Planck-Institut für Physik 10 MPP-HLL SLID module (with ALTAS FEI3)  All channels are connected and functioning  Noise value comparable to n-in-p SCMs connected by bump-bonding (~ e - ) Threshold noise: 183 e-

H.-G. Moser Max-Planck-Institut für Physik Future DEPFETs Advantages: good signal to noise (at high bandwidth: 50 MHz!) large, monolithic sensors (large fill factor) low power (only 1% of pixels are on) Disadvantages: long integration time – no time resolution! needs auxiliary electronics (problem for forward detector) no data processing in pixel (only at EOS) present technology does not allow pitch below 20 µm Idea: can the DEPFET be a sensor tier in a 3D detector? (fast, with good S/N) power! DEPFET pixel dissipates 250µW with 25 x 25 µm² pitch: 40 W/cm² Can this be improved by changing design parameters?

H.-G. Moser Max-Planck-Institut für Physik Future DEPFETs g m transconductance L: gate length W: gate width  : mobility C ox : oxide sheet capacitance Id: drain current C: sensor capacitance t  shaping time (=integration time/  DEPFETCMOS CSA Gate length L~ 5 µm< 130 nm Drain current I d µA< 10 µA Transconductance g m 40 µS>500 µS Capacitance CGate: 20 fFPixel: 100 fF Main advantage of DSM CMOS: small L, thin oxide (However, DEPFET has small C)

H.-G. Moser Max-Planck-Institut für Physik For ‘real’ detectors DEPFET 50 x 50 µm² ATLAS FEI3 50 x 400 µm² CMOS 130 nm 25 x 25 µm² L4.5 µm250 nm130 nm Id50 µA20 µA1 µA gm40 µS800 µS30 mS C20 fF400 fF100 fF Bandwidth (pixel)50 MHz40 MHz1 MHz Integration time10 µs25ns1 µs ENC40 el150 el10 el Power/pixel250 µW 32µW (analog) 76µW (total) 1 µW (analog) Power/area100mW/cm²380mW/cm²160mW (+digital) DEPFETs are competitive (or superior) in terms of noise and speed Since only a small fraction of pixels is powered at a time (1%), power consumption is very small However, the price is the long frame readout and the occupancy! Big problem at future high luminosity colliders

H.-G. Moser Max-Planck-Institut für Physik Scaled DEPFET DEPFET 25 x 25 µm² CMOS 130 nm 25 x 25 µm² L1.5 µm130 nm d ox50 nm5 nm Id1 µA3 µA gm20 µS700 µS C20 fF100 fF Bandwidth20 MHz Integration time25ns ENC38 el34 el Power/pixel5 µW Power/area0.8 W/cm² However: DCD type amplifier still needed for DEPFET Digital power in addition!

H.-G. Moser Max-Planck-Institut für Physik Summary DEPFET Present DEPFET with frame readout is an unmatched pixel sensor excellent S/N, low material, low power Readout speed at the limit (2-4x improvement possible) However, because of high power single pixel readout (with dedicated 3D integrated ASIC) seems to be excluded This could be improved using DEPFETs with smaller feature size (L) (which needs R&D and investments (technology) Still: DEPFETs would be expensive and have a long production cycle (18 months) CMOS is rather cheap, and the typical turnaround in a fab is 3 months Power becomes a problem for all technologies!

H.-G. Moser Max-Planck-Institut für Physik Future: Smart SiPMs clock x, y, t SiPM HV CMOS CMOS digital Connect ASIC chip to SIPM For each pixel: signal detection & active quenching ‘standard SIPM’ can work as tracker with SiMPL: back illumination possible (optical device) -Fast timing -Low threshold -> low gain -Active quenching -> low gain -Minimal cross-talk -Single pixel position resolution -Veto of noisy pixels Could be made using Bump bonding 3D integration techniques MIP

H.-G. Moser Max-Planck-Institut für Physik Features Dark rate: 1 MHz/mm² = 1 hit/µm²/s = O(Belle II) With 10 µm pitch and 25 ns time stamp: occupancy: 2.5 x10 -6 Power (analogue): ~ 5 µW/cm² Dominated by dark rate (even at CLIC the continuous rate is ~1kHz/mm²) R&D issues: Radiation hardness (dark rate increases due to bulk damage) Cross talk Efficiency (fill factor) Digital power

H.-G. Moser Max-Planck-Institut für Physik 18 Possible Problems Radiation Damage ( increas dark rate)) ~ I =   V  = 3.9x A/cm  =10 12 n/cm ² Rate: 240 hits/µm²/s Occupancy in a 10 x 10 µm² and 25 ns time stamp: 6x10 -4 Cross talk O(10%) in 1 mm² ?? Reduce by operating at lower voltage MIP: 80 pairs/µm 10% single electron efficiency: >98% for a MIP =>Lower dark rate =>Lower cross talk Fill factor:  80% for large pixels  drift region underneath HF may help  double layer sensor?

H.-G. Moser Max-Planck-Institut für Physik Conclusions Further Development of DEPFETs radiation hardness high readout speed -> seems to be limited (frame readout) DEPFETs with smaller structure sizes for single pixel readout -> just matches performance of DSM CMOS -> Integration technology will be indispensable SiPMs + 3D integration: potential for high rate & low power tracker Integration (flip chip bump bonding, 3D) becomes key technology CMOS development increasingly important Sensor tier: reduce complexity, outsource production eventually