1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?

Slides:



Advertisements
Similar presentations
ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala
Advertisements

Fall 2006Costas Busch - RPI1 Turing Machines. Fall 2006Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines Memory = an infinitely long tape Persistent storage A read/write tape head that can move around the tape Initially, the tape contains only.
Turing Machines.
Deterministic Turing Machines
Lecture 16 Deterministic Turing Machine (DTM) Finite Control tape head.
Turing machines Sipser 2.3 and 3.1 (pages )
Turing machines Sipser 2.3 and 3.1 (pages )
Turing Machines New capabilities: –infinite tape –can read OR write to tape –read/write head can move left and right q0q0 input tape.
Fall 2006Costas Busch - RPI1 Deterministic Finite Automata And Regular Languages.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Fall 2004COMP 3351 Turing Machines. Fall 2004COMP 3352 The Language Hierarchy Regular Languages Context-Free Languages ? ?
CS 310 – Fall 2006 Pacific University CS310 Turing Machines Section 3.1 November 6, 2006.
Lecture 5 Turing Machines
Courtesy Costas Busch - RPI1 Turing Machines. Courtesy Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines.
Computability and Complexity 3-1 Turing Machine Computability and Complexity Andrei Bulatov.
Costas Busch - RPI1 Turing Machines. Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Prof. Busch - LSU1 Turing Machines. Prof. Busch - LSU2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Non-Deterministic Finite Automata. 2 Alphabet = Nondeterministic Finite Automaton (NFA)
1 Turing Machines. 2 A Turing Machine Tape Read-Write head Control Unit.
Turing Machines A more powerful computation model than a PDA ?
1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 12 Mälardalen University 2011.
1 Language Recognition (11.4) and Turing Machines (11.5) Longin Jan Latecki Temple University Based on slides by Costas Busch from the courseCostas Busch.
CSCI 2670 Introduction to Theory of Computing September 28, 2005.
Fall 2006Costas Busch - RPI1 Deterministic Finite Automaton (DFA) Input Tape “Accept” or “Reject” String Finite Automaton Output.
Turing Machines Chapter 17. Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing.
Turing Machines (13.5) Based on slides by Costas Busch from the course
1 Turing’s Thesis. 2 Turing’s thesis: Any computation carried out by mechanical means can be performed by a Turing Machine (1930)
Theory of computing, part 4. 1Introduction 2Theoretical background Biochemistry/molecular biology 3Theoretical background computer science 4History of.
Costas Busch - LSU1 Turing’s Thesis. Costas Busch - LSU2 Turing’s thesis (1930): Any computation carried out by mechanical means can be performed by a.
Turing Machines Lecture 26 Naveen Z Quazilbash. Overview Introduction Turing Machine Notation Turing Machine Formal Notation Transition Function Instantaneous.
1 IDT Open Seminar ALAN TURING AND HIS LEGACY 100 Years Turing celebration Gordana Dodig Crnkovic, Computer Science and Network Department Mälardalen University.
1 Turing Machines - Chap 8 Turing Machines Recursive and Recursively Enumerable Languages.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Introduction to Turing Machines
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 12 Mälardalen University 2007.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Chapter 9 Turing Machines What would happen if we change the stack in Pushdown Automata into some other storage device? Truing Machines, which maintains.
Turing Machines CS 130 Theory of Computation HMU Textbook: Chap 8.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
CS 154 Formal Languages and Computability April 7 Class Meeting Department of Computer Science San Jose State University Spring 2016 Instructor: Ron Mak.
Costas Busch - LSU1 Deterministic Finite Automata And Regular Languages.
Turing’s Thesis Costas Busch - LSU.
Non Deterministic Automata
Busch Complexity Lectures: Turing Machines
Deterministic Turing Machines
COSC 3340: Introduction to Theory of Computation
Busch Complexity Lectures: Reductions
Reductions Costas Busch - LSU.
Turing Machines.
Pumping Lemma Revisited
Pushdown Automata PDAs
Pushdown Automata PDAs
Pushdown Automata PDAs
Pushdown Automata PDAs
COSC 3340: Introduction to Theory of Computation
Turing Machines 2nd 2017 Lecture 9.
Turing Machines Acceptors; Enumerators
Modeling Computation:
Chapter 9 TURING MACHINES.
Chapter 3: The CHURCH-Turing thesis
Turing Machines (11.5) Based on slides by Costas Busch from the course
CSE322 Definition and description of finite Automata
Non Deterministic Automata
Theory of computing, part 4
COSC 3340: Introduction to Theory of Computation
Formal Definitions for Turing Machines
Presentation transcript:

1 Turing Machines

2 The Language Hierarchy Regular Languages Context-Free Languages ? ?

3 Regular Languages Context-Free Languages Languages accepted by Turing Machines

4 A Turing Machine Tape Read-Write head Control Unit

5 The Tape Read-Write head No boundaries -- infinite length The head moves Left or Right

Read-Write head The head at each time step: 1. Reads a symbol 2. Writes a symbol 3. Moves Left or Right

Example: Time Time 1 1. Reads 2. Writes 3. Moves Left

Time Time 2 1. Reads 2. Writes 3. Moves Right

9 The Input String Blank symbol head Head starts at the leftmost position of the input string Input string

Blank symbol head Input string Remark: the input string is never empty

11 States & Transitions Read Write Move Left Move Right

12 Example: Time 1 current state

Time Time 2

Time Time 2 Example:

Time Time 2 Example:

16 Determinism Allowed Not Allowed No lambda transitions allowed Turing Machines are deterministic

17 Partial Transition Function Example: No transition for input symbol Allowed:

18 Halting The machine halts if there are no possible transitions to follow

19 Example: No possible transition HALT!!!

20 Final States Allowed Not Allowed Final states have no outgoing transitions In a final state the machine halts

21 Acceptance Accept Input If machine halts in a final state Reject Input If machine halts in a non-final state or If machine enters an infinite loop

22 Turing Machine Example A Turing machine that accepts the language:

23 Time 0

24 Time 1

25 Time 2

26 Time 3

27 Time 4 Halt & Accept

28 Rejection Example Time 0

29 Time 1 No possible Transition Halt & Reject

30 Infinite Loop Example A Turing machine for language

31 Time 0

32 Time 1

33 Time 2

34 Time 2 Time 3 Time 4 Time 5 Infinite loop

35 Because of the infinite loop: The final state cannot be reached The machine never halts The input is not accepted

36 Formal Definitions for Turing Machines

37 Transition Function

38 Transition Function

39 Turing Machine: States Input alphabet Tape alphabet Transition function Initial state blank Final states

40 Configuration Instantaneous description:

41 Time 4Time 5 A Move:

42 Time 4Time 5 Time 6Time 7

43 Equivalent notation:

44 Initial configuration: Input string

45 The Accepted Language For any Turing Machine Initial stateFinal state

46 Standard Turing Machine Deterministic Infinite tape in both directions Tape is the input/output file The machine we described is the standard: